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Chapter 1

PROBABILITY THEORY

1.1 Experiments and random events.

Definition 1.1.1. In probability theory, random experiment means a repeatable process that
yields a result or an observation.

Tossing a coin, rolling a die, extracting a ball from a box are random experiments.

When tossing a coin, we get one of the following elementary results:

(heads), (tails).

When throwing a die, if we denote by (1) the appearance of the face with one dot, with (2) the
appearance of the face with two dots, etc., then we get the following elementary results:

(1), (2), (3), (4), (5), (6).

Definition 1.1.2. A random event is an event that either happens or fails to happen as a
result of an experiment.

When tossing a coin, the event (heads) may happen or may fail to happen, so this is a random
event. On the other hand, if we consider the event (the coin falls down), we observe that this is
a certain event, due to gravity.

A random event depends on the combined action of several factors which may not have been
taken into consideration when setting up the experiment. When tossing a coin, such factors may
be: the way we move our hand, the characteristics of the coin, the position of the coin in our
hand.

A priori, we cannot say anything about the outcome of a random experiment. We cannot foresee
if we obtain heads or tails when tossing a coin. Probability theory deals with such random events,
giving us a tool to evaluate the chances of various outcomes of experiments.

1.2 Certain event. Impossible event.

There are two special events for every experiment: the certain event and the impossible event.
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8 CHAPTER 1. PROBABILITY THEORY

Definition 1.2.1. The certain event (denoted by S) is an event which happens with certitude
at each repetition of an experiment.

When tossing a coin, the event (one of the two faces appears) is a certain event of the experiment.
When rolling a die, the event (one of the six faces appears) is a certain event of the experiment.

Definition 1.2.2. The impossible event (denoted by ∅) is an event which never happens in a
random experiment.

When extracting a ball from a box which contains only white balls, the event (a red ball is
extracted) is an impossible event.

1.3 Contrary events.

In the case of rolling a die, let’s denote by A the event consisting of the appearance of one of
the faces 2 or 5, and B the event consisting of the appearance of one of the faces 1, 3, 4 or 6.
We observe that if the event A does not take place, then the event B takes place, and the other
way round.

Definition 1.3.1. The contrary of an event A is an event B satisfying the property that, at
any repetition of the experiment, if the event A occurs then B does not occur, and if the event B
occurs then A does not occur. The events A and B are also called mutually exclusive events.

If B is the contrary of A then A is the contrary of B.

We denote the contrary of an event A by A or {A.

1.4 Compatible events. Incompatible events.

Definition 1.4.1. The events A and B are compatible if they can occur simultaneously.

When throwing a die, the event A=(an even number appears) and the event B=(one of the
numbers 2 or 6 appears), are compatible. If the outcome of the experiment is the appearance
of the face with the number 2, then both events A and B take place.

Definition 1.4.2. The events A and C are incompatible if they cannot occur simultaneously.

When rolling a die, the events A=(an even number appears) and C=(an odd number appears)
are incompatible. They cannot take place at the same time. One may notice that the events A
and C are contrary events.

On the other hand, if we consider the event D=(the number 5 appears), we can see that A and
D are incompatible, but they are not contrary events: the non-occurrence of A does not imply
the occurrence of D.

Definition 1.4.3. The events A1, A2, ..., An are compatible if they can occur simultaneously.

When throwing a die, the events:
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A1=(one of the faces 2 or 4 appears)

A2=(one of the faces 2 or 6 appears)

A3=(one of the faces 2, 4 or 6 appears)

are compatible: if the outcome of the experiment is the appearance of the face with the number
2, all three events take place.

1.5 Event implied by another event.

Definition 1.5.1. We say that the event A implies the event B (or the event B is implied
by the event A) if the occurrence of the event A means that the event B occurs as well.

When throwing a die, the event A=(one of the faces 1 or 3 appears) implies the event B=(one
of the faces 1, 2, 3 or 5 appears).

Any event implies the certain event.

1.6 Operations with events.

In the framework of an experiment, when we study the occurrence of an event, we actually
analyze the occurrence of a part of the set of elementary results of an experiment.

When rolling a die, if we study the occurrence of the event A=(one of the faces 1 or 3 appears),
we actually analyze whether we obtain one of the results (1) or (3) from the set of elementary
events (1), (2), (3), (4), (5), (6). The event A is completely determined by the set formed by
these two elementary results, and we can identify it by A = {1, 3}.
Consider the experiment in which two dice are rolled. We are interested in the event A=(the
sum of the numbers on the two dice is 7). We look at the following elementary events:

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)

and we write A as the following set:

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

The set which represents the impossible event, which never takes place in our experiment, is the
empty set ∅. The certain event is represented by the set of all elementary events.

If A is the set of results which represent an event, then the set {A (the complementary of A) is
the set of results which represent the contrary event.

We have seen that the fact that the event A implies the event B means that whenever A takes
place, B takes places as well. Therefore, the set of results representing the event A is included
in the set of results representing the event B: A ⊂ B.

The sets representing two incompatible events are disjoint.

Definition 1.6.1. The union A∪B of two events A and B is the event which takes place when
at least one of the events A or B occur.
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Definition 1.6.2. The intersection A ∩ B of two events A and B is the event which occurs
when both events A and B take place at the same time.

Example 1.6.1. For the experiment of rolling one die, let’s consider the following events:

A = {1, 2, 5}, B = {3, 4, 5}.
The event A occurs if one of the following results is obtained: {1}, {2} or {5}; the event B
occurs if one of the results {3}, {4} or {5} is obtained.

To insure that at least one of the events A or B take place, we must obtain one of the results
{1}, {2}, {3}, {4}, {5}. Therefore:

A ∪B = {1, 2, 3, 4, 5}.
On the other hand, both events take place at the same time only in the case when the face with
number 5 is obtained, so we get:

A ∩B = {5}.

1.7 Sample space of an experiment.

Consider the following example:

Example 1.7.1. The experiment consists of tossing two coins.

If we take a look at the repartition of heads and tails on the two coins, all the possible outcomes
of this experiment form the following set:

{(H, H), (H,T ), (T,H), (T, T )} = A1.

The first letter of each couple corresponds to the first coin, while the second letter corresponds
to the second coin. In this case, every elementary result of the experiment can be regarded as
an element of the set A1.

From another point of view, if we look at the number of obtained heads and the number of
obtained tails, then the set of elementary results of the experiment can be expressed as the set:

{(2, 0), (1, 1), (0, 2)} = A2.

In this case, the first number of each couple represents the number of obtained heads, and
the second number represents the number of obtained tails. Every elementary result of the
experiment can be regarded as an element of the set A2.

Finally, if we analyze whether the two symbols obtained on the two coins are different or the
same, then the set of elementary results of the experiment is:

{same, different} = A3.

Every elementary result of the experiment can be regarded as an element of the set A3.

Each of the three sets A1, A2, A3 represents a set of elementary results of the same experiment.
However, in each case, the concept of elementary result of the experiment is specific (it means
something different) and the sets A1, A2, A3 are called sample spaces.

The sample space A1 provides more information then the spaces A2 or A3. If we know which
result of the sample space A1 has occurred, we can say which was the result of the space A2 or
A3.

Definition 1.7.1. The sample space of an experiment is a set of all elementary results (possible
outcomes) of the experiment. The elements of a sample space are called sample points.
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1.8 Frequency.

Let’s consider an experiment and an event A associated to this experiment. We repeat the
experiment n times (in given conditions) and we denote by α the number of occurrences of the
event A. The number of occurrences of the event Ā is n− α.

Definition 1.8.1. The number fn(A) =
α

n
is called relative frequency of the event A.

The number α, called absolute frequency of the event A, is between 0 and n; α = 0 if during
n repetitions of the experiment, the event A did never occur; α = n if the event A occurred at
every repetition of the experiment. Therefore

0 ≤ α ≤ n and 0 ≤ fn(A) ≤ 1, ∀n ∈ N?

Proposition 1.8.1 (Properties of the relative frequency).

1. fn(S) = 1, where S is the certain event;

2. If A ∩B = ∅ then fn(A ∪B) = fn(A) + fn(B).

1.9 Equally possible events.

Example 1.9.1. We consider the experiment of tossing a coin. The possible outcomes of this
experiment are: obtaining heads or obtaining tails, and we cannot know a priori which will be
the result. If there is no reason to believe that the occurrence of one of these two events is
favored, we can say that these two events are equally possible.

Example 1.9.2. When rolling a die, we can obtain any of the six faces. If there is no reason
to suppose that the occurrence of a face is favored, we can say that the events (1), (2), (3), (4),
(5), (6) are equally possible. In the framework of the same experiment, the events A = {1, 2}
and B = {3, 4} are also equally possible.

Definition 1.9.1. Consider two events A and B associated to an experiment. If there is no
reason to suppose that the occurrence of one of the two events is favored with respect to the other,
then we say that the two events are equally possible.

1.10 Probability of an event.

Example 1.10.1. Let’s consider the experiment of tossing a coin and the sample space A which
includes the two possible elementary results of this experiment:

H=(the outcome is heads)

T=(the outcome is tails)

A = {H, T}.
As these two events H and T are equally possible, it is natural to estimate (to measure) the
chance of occurrence of each of them by 1/2 = the inverse of the number of elementary events
from A (the relative frequency 50% = 1/2 of each of the two events).
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Example 1.10.2. We consider the experiment of rolling a die and the associated sample space
A = {(1), (2), (3), (4), (5), (6)}. As these six events are equally possible, it is natural to evaluate
the chance of occurrence of each of them by 1/6 = the inverse of the number of events from A.

Example 1.10.3. Consider the experiment of tossing two coins and the sample space A =
{(H, H), (H, T ), (T, H), (T, T )}. As the four events are equally possible, the chance of occurrence
of each of them is evaluated by 1/4 = the inverse of the number of events from A.

Example 1.10.4. When tossing two coins and considering the sample space

A = {(same symbol), (different symbols)}

as the events are equally possible, we evaluate the chance of occurrence of each event by 1/2 =
the inverse of the number of events from A.

Definition 1.10.1. If the events of the sample space A associated to an experiment are equally
possible, we say that they are equally probable and the probability of each event is equal
to the inverse of the number of events from the sample space.

In the followings, we extend the definition of the probability of an event to events which do not
belong to the sample space associated to an experiment, but which are parts of A, meaning that
they belong to P(A) (the set of parts of A). Let’s start with an example.

Example 1.10.5. Consider the experiment of rolling a die and the sample space A =
{(1), (2), (3), (4), (5), (6)}. The event A =(an even number appears) is actually A =
{(2), (4), (6)}. The occurrence of any of the events (2), (4), (6) is favorable to the occurrence of
A. That’s why we evaluate the chance of occurrence of the event A (the probability of A) by
3 times the chance of occurrence of any of the events (2), (4), (6). The ratio 3

6 = 1
2 represents

the chance (probability) of occurrence of the event A and is obtained by dividing the number of
events from A which are favorable for the occurrence of A to the number of all events of A.

Definition 1.10.2. If the sample space A associated to an experiment is made up of n equally
probable events and A is an event belonging to P(A), then the probability of the event A is
the ratio between the number of equally probable events of A which define A and the total number
of events of A.

It results that if A = ∅ then P (A) = 0 and if A = A then P (A) = 1. In general, P (A) ∈ [0, 1].

Taking into account the definition of a contrary event, it results that if A has n elements and A
is made up of m ≤ n elements, then Ā has n−m elements and:

P (Ā) =
n−m

n
= 1− m

n
= 1− P (A).

1.11 Finite sample space. Elementary event.

Definition 1.11.1. A finite sample space associated to an experiment is a finite set S =
{e1, e2, ..., en} of abstract elements.

The parts of the set S are called events. An vent is called elementary if it consists of a single
point of the space S. The empty part of S, ∅, is called impossible event, and S is called
certain event.
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Example 1.11.1. The teachers of a school are asked the following questions:

1. Is it necessary to modernize the school?

2. Is it necessary to build a sport facility for the school?

The answers given by one teacher can be one of the followings: e1 = (YES, YES), e2 =
(YES,NO), e3 = (NO,YES), e4 = (NO, NO). The set

S = {e1, e2, e3, e4}
is a possible sample space for this experiment for a given teacher. The subsets of this space are:

P(S) = {∅, {e1}, {e2}, {e3}, {e4}, {e1, e2}, {e1, e3}, {e1, e4}, {e2, e3}, {e2, e4}, {e3, e4},
{e1, e2, e3}, {e1, e2, e4}, {e2, e3, e4}, {e1, e2, e3, e4}}.

Each of these subsets is an event. The subsets E1 = {e1}, E2 = {e2}, E3 = {e3}, E4 = {e4}
contain only one point and they are elementary events. Any event (besides the impossible event)
is a union of elementary events.

1.12 Axiomatic definition of probability

Definition 1.12.1. We call probability on the sample space S = {e1, e2, ..., en} a function
P which associates to every event A ∈ P(S) a number P (A), called probability of A, such that
the following conditions (axioms) are fulfilled:

i) P (A) ≥ 0, ∀A ∈ P(S);

ii) P (S) = 1;

iii) A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B), ∀A,B ∈ P(S).

The function P : P(S) → R1
+ is called probability measure.

The sample space S together with the probability measure P (the pair (S, P )) is called probability
space.

Proposition 1.12.1. Let A∈P(S).

1. If A=∅ then P (A)=0.

2. If A={e1, e2, ..., ek} then P (A) =
k∑

i=1

P ({ei}).

Proof. As P (∅ ∪ S) = P (∅) + P (S) and ∅ ∪ S = S, it results that P (∅) + P (S) = P (S) and
therefore P (∅) = 0.

If A = {e1, e2, ..., ek} it can be written as A = {e1, e2, ..., ek−1} ∪ {ek}, hence P (A) =
P ({e1, e2, ..., ek−1}) + P ({ek}). Therefore, we have:

P ({e1, e2, ..., ek}) = P ({e1, e2, ..., ek−1}) + P ({ek})
P ({e1, e2, ..., ek−1}) = P ({e1, e2, ..., ek−2}) + P ({ek−1})

· · · · · · · · ·
P ({e1, e2}) = P ({e1}) + P ({e2})
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Summing up all these equalities, we obtain:

P ({e1, e2, ..., ek}) =
k∑

i=1

P ({ei}).

Consequence 1.12.1. If all n elementary events e1, e2, ..., en of the sample space S
have the same probability (are equally probable), i.e. P ({ei}) = P ({ej}), ∀i, j = 1, n, then

P ({ei}) =
1
n

, ∀i = 1, n.

Remark 1.12.1. In many applications, the elementary events from a sample space S have
different probabilities. In Example 1.11.1, it is possible that the number of the teachers answering
ei is different of those answering ej . Suppose that 60% of the teachers answer e1, 20% answer
e2, 15% answer e3 and 5% answer e4. It is obvious that in this case, we associate the following
probabilities to the elementary events:

P ({e1}) = 0.6 P ({e2}) = 0.2 P ({e3}) = 0.15 P ({e4}) = 0.05.

Proposition 1.12.2. For any A ∈ P(S), we have:

P ({A) = 1− P (A).

Proof. As A ∩ {A = ∅ and A ∪ {A = S, we have P (A) + P ({A) = P (S) = 1, so P ({A) =
1− P (A).

Proposition 1.12.3. If A,B ∈ P(S) and A ⊂ B then P (A) ≤ P (B).

Proof. A ⊂ B, so B = A∪(B∩{A). As A∩(B∩{A) = ∅, it results that P (B) = P (A)+P (B∩{A)
and as P (B ∩ {A) ≥ 0, it results that P (B) ≥ P (A).

Proposition 1.12.4. If A1, A2, ..., An ∈ P(S) and Ai ∩Aj = ∅, ∀i 6= j, then

P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P (Ai).

Proof. For n = 2 the equality P (A1 ∪ A2) = P (A1) + P (A2) is true, by means of axiom iii) of
the definition of the probability measure.

For n = 3 we have (A1 ∪A2) ∩A3 = ∅, so

P ((A1 ∪A2) ∪A3) = P (A1 ∪A2) + P (A3) = P (A1) + P (A2) + P (A3).

By mathematical induction, suppose that for any A1, A2, .., An such that Ai ∩ Aj = ∅, ∀i 6= j
we have

P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P (Ai)

and consider A1, A2, .., An, An+1 such that Ai ∩Aj = ∅, ∀i 6= j, i, j = 1, n + 1. We have:

P

(
n+1⋃

i=1

Ai

)
= P

(
n⋃

i=1

Ai ∪An+1

)
= P

(
n⋃

i=1

Ai

)
+ P (An+1) =

=
n∑

i=1

P (Ai) + P (An+1) =
n+1∑

i=1

P (Ai)
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Proposition 1.12.5. For any A,B ∈ P(S) the following equality holds:

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. Consider C = A ∩ {B, D = B ∩ {A and remark that we have

A ∪B = C ∪ (A ∩B) ∪D

leading us to
P (A ∪B) = P (C) + P (A ∩B) + P (D).

Taking into account the equalities

P (A) = P (A ∩B) + P (A ∩ {B) = P (A ∩B) + P (C)

and
P (B) = P (A ∩B) + P (B ∩ {A) = P (A ∩B) + P (D)

we obtain:

P (A ∪B) = P (A)− P (A ∩B) + P (A ∩B) + P (B)− P (A ∩B) =
= P (A) + P (B)− P (A ∩B).

Proposition 1.12.6. For any A1, A2, .., An ∈ P(S) we have:

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P (Ai) , ∀n ∈ N.

Proof. For n = 2, taking into account that P (A1 ∩A2) ≥ 0, we have

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) ≤ P (A1) + P (A2)

By mathematical induction, suppose that for any A1, A2, .., An we have

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P (Ai)

and we want to show that:

P

(
n+1⋃

i=1

Ai

)
≤

n+1∑

i=1

P (Ai)

We have:

P

(
n+1⋃

i=1

Ai

)
≤ P

(
n⋃

i=1

Ai

)
+ P (An+1) ≤

n∑

i=1

P (Ai) + P (An+1) =
n+1∑

i=1

P (Ai).

Proposition 1.12.7. For any A1, A2, .., An ∈ P(S) we have:

P

(
n⋂

i=1

Ai

)
≥ 1−

n∑

i=1

P ({Ai) , ∀n ∈ N.
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Proof.

P

(
n⋂

i=1

Ai

)
= 1− P

(
{

n⋂

i=1

Ai

)
= 1− P

(
n⋃

i=1

{Ai

)
≥ 1−

n∑

i=1

P ({Ai).

Example 1.12.1. If the probabilities of the elementary events are those from Remark 1.12.1,
compute the probability that, randomly choosing a teacher, he/she would answer YES to the
question concerning:

i) modernizing the school;

ii) necessity of a sports facility;

iii) modernizing the school or necessity of a sports facility.

Solution: i) Choosing a teacher that would answer YES to the question concerning modernizing
the school means the event {e1, e2} and its probability is P ({e1, e2}) = 0.6 + 0.2 = 0.8.
ii) Choosing a teacher that would answer YES to the question concerning the necessity of a
sports facility means the event {e1, e3} and its probability is P ({e1, e3}) = 0.6 + 0.15 = 0.75.
iii) Choosing a teacher that would answer YES to one of the two questions means the event
{e1, e2, e3} and its probability is P ({e1, e2, e3}) = 0.6 + 0.2 + 0.15 = 0.95.

1.13 Independent and dependent events.

Definition 1.13.1. The events A and B from P(S) are called independent if

P (A ∩B) = P (A) · P (B).

Theorem 1.13.1. If A,B ∈ P(S) are independent events having non-zero probabilities, then
A ∩B is a set which contains at least one point ei of the sample space S.

Proof. We have to show that A∩B 6= ∅. Considering that A∩B = ∅ it results that P (A∩B) = 0
and as P (A ∩ B) = P (A) · P (B) it results that P (A) · P (B) = 0. Hence, we obtain that either
P (A) = 0 or P (B) = 0, which is absurd, taking into consideration the hypothesis of the theorem.
Therefore, A ∩B 6= ∅.
Definition 1.13.2. We say that the events A1, A2, ..., An are totally independent, or inde-
pendent, if for any 1 ≤ i1 < i2 < ... < is ≤ n, we have:

P (Ai1 ∩Ai2 ∩ ... ∩Ais) = P (Ai1) · P (Ai2) · ... · P (Ais).

Definition 1.13.3. We say that the events A1, A2, ..., An ∈ P(S) are k-independent, k ≤ n,
if the events of any family of k events are independent as in Definition 1.13.2.

Remark 1.13.1. The independence of the events A1, A2, ..., An means that

C2
n + C3

n + ... + Cn
n = 2n − n− 1

relations have to be satisfied.
The independence of three events A1, A2, A3 means that we must have:

P (A1 ∩A2) = P (A1) · P (A2)
P (A1 ∩A3) = P (A1) · P (A3)
P (A2 ∩A3) = P (A2) · P (A3)

P (A1 ∩A2 ∩A3) = P (A1) · P (A2) · P (A3)
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Theorem 1.13.2. If A and B are independent events, then the events A and {B; {A and B;
{A and {B are also independent.

Proof. We know that P (A ∩ B) = P (A) · P (B). We have to prove the following equalities:
P (A ∩ {B) = P (A) · P ({B); P ({A ∩B) = P ({A) · P (B); P ({A ∩ {B) = P ({A) · P ({B).

In order to obtain P (A ∩ {B) = P (A) · P ({B) we write A = (A ∩B) ∪ (A ∩ {B). We find that:

P (A) = P (A ∩B) + P (A ∩ {B) = P (A) · P (B) + P (A ∩ {B)

or:
P (A) · [1− P (B)] = P (A ∩ {B).

As 1− P (B) = P ({B), we obtain that P (A) · P ({B) = P (A ∩ {B).

The other equalities are proved similarly.

Definition 1.13.4. We say that the events B1, B2, ..., Bk ∈ P(S) form a partition of the
sample space S if the following conditions are fulfilled:

i) Bi ∩Bj = ∅ for i 6= j;

ii)
k⋃

i=1

Bi = S;

iii) P (Bi) > 0, ∀i = 1, 2, ..., k.

The events of a partition of the sample space are called hypotheses.

Definition 1.13.5. Let A1, A2, ..., An, B1, B2, ..., Bk two partitions of the sample space S. We
say that these partitions are independent if

P (Ai ∩Bj) = P (Ai) · P (Bj)

for any i, j, i = 1, 2, ..., n, j = 1, 2, ..., k.

Example 1.13.1. If A is an event of the sample space S, then A and S are independent.

Solution: A = A ∩ S, therefore P (A) = P (A ∩ S) = P (A) · P (S), because P (S) = 1.

Example 1.13.2. We toss two coins. The events A =”obtain heads on the first coin” and
B =”obtain tails on the second coin” are independent.

Solution: A sample space of this experiment is

S={e1 =(H, H), e2 =(H, T ), e3 =(T, H), e4 =(T, T )}.

The events A and B are
A = {e1, e2}, B = {e2, e4}.

The elementary events e1, e2, e3, e4 of the sample space are equally probable and P (ei) =
1
4
,

i = 1, 2, 3, 4. Therefore, P (A) =
1
2
, P (B) =

1
2
. The event A ∩ B is actually A ∩ B = {e2} and

its probability is P (A ∩B) =
1
4
. Hence, P (A ∩B) = P (A) · P (B).
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Example 1.13.3. When tossing two coins, consider the following events: A1 =”obtain heads
on the first coin”, A2 =”obtain tails on the second coin”, A3 =”obtain heads and tails”. The
events A1, A2, A3 are not 3-independent.

Solution: A sample space of this experiment is

S={e1 =(H, H), e2 =(H, T ), e3 =(T, H), e4 =(T, T )}.

The events A1, A2, A3 are

A1 = {e1, e2}, A2 = {e2, e4}, A3 = {e2, e3}.

We have:

A1 ∩A2 = {e2} ⇒ P (A1 ∩A2) =
1
4

= P (A1) · P (A2)

A1 ∩A3 = {e2} ⇒ P (A1 ∩A3) =
1
4

= P (A1) · P (A3)

A2 ∩A3 = {e2} ⇒ P (A2 ∩A3) =
1
4

= P (A2) · P (A3)

A1 ∩A2 ∩A3 = {e2} ⇒ P (A1 ∩A2 ∩A3) =
1
4
6= 1

8
= P (A1) · P (A2) · P (A3).

Example 1.13.4. When tossing two coins, consider the following events:

A1 =”obtain heads on the first coin”;

A2 =”obtain tails on the first coin”;

A3 =”obtain heads on the second coin”;

A4 =”obtain tails on the second coin”.

Show that the events A1, A2, A3, A4 are not totally independent.

Example 1.13.5. If S = {e1, e2, e3, e4} is the sample space associated to the experiment from
Example 1.13.2, then the events {e1}, {e2}, {e3}, {e4} form a partition of the sample space S.

1.14 Conditional probability

We illustrate the meaning of ”conditional probability” using the following example:

Example 1.14.1. Consider rolling two dice. Let a be the number which appears on the first
die and b the number appearing on the second die. What is the probability that b = 3, knowing
that a + b > 8?

Solution: The sample space associated to this experiment is the set S of the following pairs:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
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All these events are equally probable and P ((i, j)) =
1
36

, for any i = 1, 6, j = 1, 6. Looking at

all the elementary events of the sample space S, only in the case of the events (6, 3), (5, 4), (4, 5),
(3, 6), (6, 4), (5, 5), (4, 6), (6, 5), (5, 6), (6, 6) the condition a + b > 8 is fulfilled. We consider the
set S ′ formed by these events:

S ′ = {(6, 3), (5, 4), (4, 5), (3, 6), (6, 4), (5, 5), (4, 6), (6, 5), (5, 6), (6, 6)}.

The set S ′ is another sample space associated to this experiment, built up by taking into account
that a + b > 8. The elementary events of the sample space S ′ are equally probable and their

probability is
1
10

.

We find only one element of the sample space S ′ for which b = 3: (6, 3). Therefore, in the sample

space S ′, the probability of the event b = 3 is
1
10

. This result will be called the probability of
”b = 3” conditioned by ”a + b > 8”.

We can rethink everything in the following manner: first, we compute the probability in the

sample space S of the event A =”a + b > 8”. This is P (A) =
10
36

. Then, we determine, in

the same sample space S the probability of the event B =”b = 3”. We get P (B) =
6
36

. The

probability in S that both events A and B take place is P (A ∩B) = P ((6, 3)) =
1
36

.

If we denote by P (B|A) the probability of the event B, conditioned by the occurrence of the
event A, we have:

P (B|A) =
1
10

, P (A) =
10
36

, P (A ∩B) =
1
36

,

and therefore

P (B|A) =
P (B ∩A)

P (A)
=

P (A ∩B)
P (A)

.

Definition 1.14.1. The probability of the event A conditioned by the occurrence of
the event B is denoted by P (A|B) or PB(A) and is defined by

P (A|B) =
P (A ∩B)

P (B)
dac’a P (B) 6= 0.

Instead of ”probability of the event A conditioned by the occurrence of the event B” we simply
say ”probability of A, given B”.

The reduced sample space is B (the conditioning event).

Remark 1.14.1. The probability which has been introduced by the axiomatic Definition 1.12.1
can be regarded as a conditional probability, conditioned by the certain event, which is a sample
space S, such that P (S) = 1.

Proposition 1.14.1. For a fixed event B ∈ P(S) such that P (B) 6= 0, for any two events
A1, A2 from P(S), we have:

A1) 0 ≤ P (A1|B) ≤ 1;

A2) P (S|B) = 1;

A3) A1, A2 - incompatible ⇒ P ((A1 ∪A2)|B) = P (A1|B) + P (A2|B).
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Proof. From P (A1|B) =
P (A1 ∩B)

P (B)
it results that P (A1|B) ≥ 0 and from P (A1 ∩ B) ≤ P (B)

we get that P (A1 ∩B) ≤ 1.

P (S|B) =
P (S ∩B)

P (B)
=

P (B)
P (B)

= 1.

P ((A1∪A2)|B)=
P ((A1∪A2)∩B)

P (B)
=

P (A1∩B)
P (B)

+
P (A2∩B)

P (B)
=P (A1|B)+P (A2|B).

Theorem 1.14.1. If A and B are independent events with non-zero probabilities, then:

P (A|B) = P (A) and P (B|A) = P (B).

Proof. As A and B are independent and A ∩B = B ∩A, we have

P (A ∩B) = P (B ∩A) = P (A) · P (B).

Hence:

P (A|B) =
P (A ∩B)

P (B)
=

P (A) · P (B)
P (B)

= P (A)

P (B|A) =
P (B ∩A)

P (A)
=

P (B) · P (A)
P (A)

= P (B).

Theorem 1.14.2. If A1, A2, ..., An are events such that P (A1 ∩ A2 ∩ ... ∩ An) 6= 0 (they can
occur simultaneously, i.e. they are compatible), then

P (A1 ∩A2 ∩ ... ∩An) = P (A1) · P (A2|A1) · P (A3|(A1 ∩A2)) · ... · P (An|(A1 ∩ ... ∩An−1)).

Proof.

P (A1) · P (A2|A1) · P (A3|(A1 ∩A2)) · ... · P (An|(A1 ∩ ... ∩An−1)) =

= P (A1) · P (A1 ∩A2)
P (A1)

· P (A3|(A1 ∩A2)) · ... · P (An|(A1 ∩ ... ∩An−1)) =

= P (A1 ∩A2) · P (A1 ∩A2 ∩A3)
P (A1 ∩A2)

· ... · P (An|(A1 ∩ ... ∩An−1)) =

. . . . . . . . .

= P (A1 ∩ ... ∩An−1) · P (A1 ∩ ... ∩An−1 ∩An)
P (A1 ∩ ... ∩An−1)

= P (A1 ∩ ... ∩An).

Consequence 1.14.1. If A1, A2, ..., An are independent events then:

P (A1 ∩A2 ∩ ... ∩An) = P (A1) · P (A2) · ... · P (An).

Example 1.14.2. A box contains 3 white balls and 5 black balls. We extract 2 balls from the
box, one after the other. Give a sample space for this experiment and the probabilities of the
elementary events of this sample space.
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Solution: If w means extracting a white ball and b means extracting a black ball, then a sample
space associated to this experiment is:

S = {(w, w), (w, b), (b, w), (w,w)}.

The event (b, w) means that the first ball is black and the second ball is white. As the balls are
randomly extracted from the box, Based on the conditional probability formula, we have:

P (w, w) =
3
8
· 2
7

=
6
56

, P (w, b) =
3
8
· 5
7

=
15
56

, P (b, w) =
5
8
· 3
7

=
15
56

, P (b, b) =
5
8
· 4
7

=
20
56

.

Theorem 1.14.3 (total probability formula). If the events A1, A2, ..., An form a partition of
the sample space S and X ∈ P(S), then:

P (X) =
n∑

i=1

P (Ai) · P (X|Ai).

Proof. We can write X as:

X =
n⋃

i=1

(X ∩Ai).

As (X ∩Ai) ∩ (X ∩Aj) = ∅ for i 6= j, we obtain:

P (X) =
n∑

i=1

P (X ∩Ai).

But P (X ∩Ai) = P (Ai) · P (X|Ai), and by replacement, we obtain the requested equality.

Example 1.14.3. Three boxes have the following structure: the box i contains ai white balls
and bi black balls, i = 1, 2, 3. The event Ai consists of choosing the box i. It is know that
P (Ai) = pi and p1 + p2 + p3 = 1. A box is randomly chosen and a ball is extracted. What is
the probability that the extracted ball is black?

Solution: Let X be the event ”the extracted ball is black”. The probability that a black ball
is extracted, given that the the box i has been chosen is:

P (X|Ai) =
bi

ai + bi
.

Therefore, based on the total probability formula, the probability that a black ball is extracted
is:

P (X) = P (A1) · P (X|A1) + P (A2) · P (X|A2) + P (A3) · P (X|A3) =

= p1
b1

a1 + b1
+ p2

b2

a2 + b2
+ p3

b3

a3 + b3
.

Theorem 1.14.4 (Bayes’ formula). If the events A1, A2, ..., An form a partition of the sample
space S and are the cause of the occurrence of an event X, then:

P (Ak|X) =
P (Ak) · P (X|Ak)
n∑

i=1

P (Ai) · P (X|Ai)

.
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Proof. takes into account the equalities

P (Ai) · P (X|Ai) = P (X) · P (Ai|X)

and the total probability formula.

Definition 1.14.2. The probabilities P (Ai), P (X|Ai), i = 1, n are called prior probabilities
and P (Ai|X) are called posterior probabilities. The event X is called evidence.

Before we receive the evidence, we have a set of prior probabilities P (Ai), i = 1, n for the
hypotheses. If we know the correct hypothesis, we know the probability for the evidence. That
is, we know P (X|Ai), i = 1, n. If we want to find the probabilities for the hypothesis, given the
evidence, that is, we want to find P (Ai|X), we can use the Bayes’ formula.

Example 1.14.4. Consider two boxes. The first one contains 2 white balls and 3 black balls,
and the second contains 7 white balls and 5 black balls. The event A1 means choosing the first
box, and the event A2 means choosing the second box. It is known that the probability of the
event A1 is P (A1) = 0.4, and the probability of the event A2 is P (A2) = 0.6. We randomly
choose one box and a black ball. What is the probability that this black ball is chosen from the
second box?

Solution: Let X be the event ”a black ball has been extracted”. By Bayes’ formula, we have:

P (A1|X) =
P (A1) · P (X|A1)

P (A1) · P (X|A1) + P (A2) · P (X|A2)
=

0.4 · 3
5

0.4 · 3
5 + 0.6 · 5

12

≈ 0.49;

P (A2|X) =
P (A2) · P (X|A2)

P (A1) · P (X|A1) + P (A2) · P (X|A2)
=

0.6 · 5
12

0.4 · 3
5 + 0.6 · 5

12

≈ 0.51.

Bayes’s formula is particularly appropriate for medical diagnosis, as it can be seen from the
following example:

Example 1.14.5. A doctor gives a patient a test for a particular cancer. Before the results of
the test, the only evidence the doctor has to go on, is that 1 man in 1000 has cancer. Experience
has shown that, in 99 percent of the cases in which cancer is present, the test is positive; and
in 95 percent of the cases in which it is not present, it is negative. If the test turns out to be
positive, what probability should the doctor assign to the event that cancer is present?

Solution: Let’s denote by C the event ”the patient has cancer”. For our experiment, C and C
are hypotheses. We will also denote by + the event ”the test is positive” and by − the event
”the test is negative”, which are evidences. We are given the prior probabilities P (C) = 0.001,
P (+|C) = 0.99 and P (−|C) = 0.95. We can easily compute P (C) = 0.999 and P (+|C) = 0.05.
Using Bayes’ formula, we compute:

P (C|+) =
P (C) · P (+|C)

P (C) · P (+|C) + P (C) · P (+|C)
=

0.001 · 0.99
0.001 · 0.99 + 0.999 · 0.05

≈ 0.019

Hence, we find that among positive results, only 1.9 percent are cancers, and 98.1 percent are
false positives. When a group of medical students was asked this question, almost all students
incorrectly guessed the probability to be larger then 50 percent.
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1.15 One-dimensional discrete random variables

In order to introduce the term discrete random variable and its distribution, we consider the
following example:

Example 1.15.1. We extract 3 balls from a box containing an equal number of white and black
balls, and we put the ball back into the box after each extraction. How many white balls can
occur and what are the associated probabilities?

Solution: We will give the answer to this question indicating the possible outcomes and the
associated probabilities.

Sample space Nr. of white balls Probability
WWW 3 1

2 · 1
2 · 1

2 = 1
8

WWB 2 1
2 · 1

2 · 1
2 = 1

8
WBW 2 1

2 · 1
2 · 1

2 = 1
8

BWW 2 1
2 · 1

2 · 1
2 = 1

8
WBB 1 1

2 · 1
2 · 1

2 = 1
8

BWB 1 1
2 · 1

2 · 1
2 = 1

8
BBW 1 1

2 · 1
2 · 1

2 = 1
8

BBB 0 1
2 · 1

2 · 1
2 = 1

8

The information concerning the number of white balls and their probabilities, is given in the
following table:

Nr. of white balls 0 1 2 3
Probability 1

8
3
8

3
8

1
8

If the variable X represents the number of white balls that can occur, then the table shows the
values X can take and the probabilities to take these values.

The set of ordered pairs, each of the form (number of white balls, corresponding probability),
defines the distribution of the random variable X. Because the values of X are determined by
events resulting from a random experiment, we call X a random variable.

The function f defined by f(x) = P (X = x), is called frequency or probability function.

In our case

f(0)=f(X =0)=
1
8
; f(1)=f(X =1)=

3
8
; f(2)=f(X =2)=

3
8
; f(3)=f(X =3)=

1
8
.

We observe that

f(x) = P (X = x) = Cx
3 ·

(
1
2

)3

, x = 0, 1, 2, 3;

f(x) ≥ 0 and
3∑

i=0

f(x) =
3∑

i=0

Cx
3 ·

(
1
2

)3

= 23 ·
(

1
2

)3

= 1.

Definition 1.15.1. A variable whose value is a number determined by the elementary event
resulting from an experience, is called random variable.

Definition 1.15.2. If X is a random variable which can take the values x1, x2, ..., xn with the
probabilities f(x1), f(x2), ..., f(xn) then the set of ordered pairs (xi, f(xi)), i = 1, n is called
the probability distribution of the random variable X.
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In our previous example, the distribution is: (0, 1
8), (1, 3

8), (2, 3
8), (3, 1

8) or:

X :
(

0 1 2 3
1
8

3
8

3
8

1
8

)
.

Example 1.15.2. Three balls, a, b, c, are randomly distributed in three boxes. Determine the
distribution of the random variable X =”the number of non-empty boxes”.

Solution:

X :
(

1 2 3
3
27

18
27

6
27

)
.

Remark 1.15.1. In the Kolmogorov approach, the random variable X is a function defined on
a sample space corresponding to the experience, that is a ”point function”. So, if we consider,
in the previous example, the following events:

e1 = {abc|0|0} e10 = {c|ab|0} e19 = {0|b|ac}
e2 = {0|abc|0} e11 = {0|ab|c} e20 = {a|0|bc}
e3 = {0|0|abc} e12 = {b|ac|0} e21 = {0|a|bc}
e4 = {ab|c|0} e13 = {0|ac|b} e22 = {a|b|c}
e5 = {ab|0|c} e14 = {a|bc|0} e23 = {a|c|b}
e6 = {ac|b|0} e15 = {0|bc|a} e24 = {b|c|a}
e7 = {ac|0|b} e16 = {c|0|ab} e25 = {b|a|c}
e8 = {bc|a|0} e17 = {0|c|ab} e26 = {c|a|b}
e9 = {bc|0|a} e18 = {b|0|ac} e27 = {c|b|a}

and the sample space S = {e1, ..., e27}, we can consider the function X : S → {1, 2, 3}, defined
as: X(ek) = the number of non-empty boxes if the event ek takes place. It is clear that X(ek) = 1
if k = 1, 2, 3; X(ek) = 2 if k = 4, 5, ...21; and X(ek) = 3 if k = 22, 23, 24, 25, 26, 27.

If the random variable is given in this manner, then the values of the variable are known for
each event ek ∈ S and P (ek). From here one can determine the possible values of the variable
and the probabilities corresponding to these values. In this way one can obtain the distribution
of the random variable X.

Example 1.15.3. For the experience from the Example 1.15.2, let us denote Y the random
variable whose values are the number of balls from the first box.

The random variable Y can take the values 0, 1, 2 or 3, because we can have 0, 1, 2 or 3 balls
in the first box.

Y takes the value 0 if one of the following events from the sample space S takes place: e2, e3,
e11, e13, e15, e17, e19, e21, that is

(Y = 0) = (e2 or e3 or e11 or e13 or e15 or e17 or e19 or e21).

It follows that

P (Y = 0) =P ({e2}) + P ({e3}) + P ({e11}) + P ({e13}) + P ({e15}) + P ({e17})+
+ P ({e19}) + P ({e21}) =

8
27

.

Y takes the value 1 if one of the events: e10, e12, e14, e16, e18, e20, e22− e27 take place; the value
2 , for one of the events e4 − e9 and the value 3 if the event e1 takes place.
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So the distribution of the random variable Y is:

Y :
(

0 1 2 3
8
27

12
27

6
27

1
27

)
.

Remark 1.15.2. Onicescu considered the random variable as ”an event function”. A possible
value for the random variable can correspond to an elementary event from the sample space (the
value 3 of the random variable Y from the Example 1.15.3, corresponds to the elementary event
e1) or to a subset of elementary events which determine an event (foe example, the event Y = 2
is determined by a set of elementary events, e4 − e9).

Remark 1.15.3. A random variable which takes the distinct values x1, x2, ..., xn determines a
partition A1, A2, ..., An of the sample space S. The event Ai is defined by ek ∈ Ai ⇔ X(ek) = xi.

In the Example 1.15.3 the random variable Y determines the following partition of the sample
space S:

A1: ”There is no ball in the first box.”

A2: ”There is a ball in the first box.”

A3: ”There are two balls in the first box.”

A4: ”There are three balls in the first box.”

We have:

A1 ∪A2 ∪A3 ∪A4 = S
Ai ∩Aj = ∅ for i 6= j

P (A1) = P (Y = 0) =
8
27

, P (A2) = P (Y = 1) =
12
27

,

P (A3) = P (Y = 2) =
6
27

, P (A4) = P (Y = 3) =
1
27

,

which proves the statement we made.

Definition 1.15.3. A random variable with a countable set of possible values is called discrete
random variable.

Definition 1.15.4. We will say that the random variable X is symmetric with respect to the
point c if the following conditions are satisfied:

i) if c + a is a value of the random variable X, then c − a is also a value of the random
variable X;

ii) P (X = c + a) = P (X = c− a).

The condition ii) can be rewritten as

P (X − c = a) = P (c−X = a)

which shows that ”X is symmetric with respect to the point c”.

X − c and c−X have the same distribution.

In particular, the symmetry with respect to zero shows that X and −X have the same
distribution.
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Example 1.15.4. If P (X = i) =
1
n

, i = 1, 2, ..., n then X is symmetrically distributed with

respect to
n + 1

2
, which is the middle point of the two extreme possible values: 1 and n.

Remark 1.15.4. If the random variables X, Y are seen as functions defined on the sample
space S, then we can define the sum X + Y , the product X · Y , and the scalar product k ·X
of the random variables. The meaning of these operations is that of the corresponding function
operations.

Also, if k is a real function defined on the value set of the variable X, k : X(S) → R1, then we
can make the composition k ◦X and we still obtain a random variable, whose values determine
the set k(S(X)).

1.16 The distribution function of a discrete one-dimensional
random variable

Some questions:

• If we throw two dice, what is the probability that the sum of the obtained numbers is less
than 7?

• If three balls are randomly distributed in three boxes, what is the probability that two or
less than two of these boxes shall be non-empty?

• If three balls are randomly distributed in three boxes, what is the probability that there
shall be at most two balls in the first box?

Generally: What is the probability that a random variable X shall take values less than a
given number?

The need of answering these kind of questions has led to the following definition:

Definition 1.16.1. Let X be a random variable and x a real number. The function F defined
as: ”F (x) is the probability that X shall take values less than x”, or

F (x) = P (X < x)

is called the distribution function (or probability density function) of the random variable
X.

Proposition 1.16.1. If X is a discrete random variable having the distribution

X :
(

x1 x2 ... xn

f(x1) f(x2) ... f(xn)

)

then
F (x) =

∑
xi<x

f(xi)

that is, the value of the distribution function in x is given by the sum of the left-hand-side (with
respect to x) probability values.

Proof. Immediate.
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Proposition 1.16.2. The following equalities take place:

i) lim
x→xi
x>xi

F (x) = F (xi + 0) =
i∑

j=1

f(xj);

ii) lim
x→xi
x<xi

F (x) = F (xi − 0) =
i−1∑

j=1

f(xj) = F (xi).

Proof. i) For x ∈ (xi, xi+1) we have:

F (x) =
i∑

j=1

f(xj).

It follows that

F (xi + 0) =
i∑

j=1

f(xj).

ii) For x ∈ (xi−1, xi) we have:

F (x) =
i−1∑

j=1

f(xj).

It follows that

F (xi − 0) =
i−1∑

j=1

f(xj) = F (xi).

Proposition 1.16.3. The following inequalities take place:

i) 0 ≤ F (x) ≤ 1, ∀x ∈ R1;

ii) x < y ⇒ F (x) ≤ F (y).

Proof. i) Because F (x)=P (X <x) and P (X <x) ∈ [0, 1], we have that F (x) ∈ [0, 1].

ii) x < y. If xi < x, then xi < y, and so
∑
xi<y

f(xi) =
∑
xi<x

f(xi) +
∑

x≤xi<y

f(xi),

that is F (x) ≤ F (y).

Proposition 1.16.4. If x < y, then F (y)− F (x) = P (x ≤ X < y).

Proof. If x < y, we have:

F (y) =
∑
xi<y

f(xi) =
∑
xi<x

f(xi) +
∑

x≤xi<y

f(xi) = F (x) + P (x ≤ X < y)

and from here it follows that F (y)− F (x) = P (x ≤ X < y).
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Remark 1.16.1. If X is a discrete random variable, then the distribution function of the
random variable X is a left-continuous step function. We have a discontinuity (a leap) in every
point x which is a value for the random variable X(x = xi), and the hight of the leap is f(xi).

Definition 1.16.2. We call α-quantile the value xα with the property

F (xα) = P (X < xα) = α.

If X is a discrete random variable, it is not sure that for each α ∈ [0, 1] there is an α-quantile. But
if there exists an α-quantile, then we have an infinity (the interval that separates two possible
values).

The 1/2-quantile is called median and we denote it Me; so, F (Me) = 1/2.

The 1/4- and 3/4-quantiles are called the lower quantile, Q1, and the upper quantile, Q2;
so F (Q1) = 1/4 and F (Q2) = 3/4.

Definition 1.16.3. We call modulus the value xi such that f(xi) is maximal.

A random variable may have more then one modulus. When throwing a die, the six faces occur
with equal probabilities; in this case, all values of the random variable X=”the obtained number”
are modula.

Example 1.16.1. Let’s consider the experiment consisting of distributing three balls a, b, c in
three boxes, taking into consideration the random variable X from Example 1.15.2) and Y from
Example 1.15.3.

X :
(

1 2 3
3
27

18
27

6
27

)
and Y :

(
0 1 2 3
8
27

12
27

6
27

1
27

)
.

We obtain the distribution functions:

F (x) =





0 , x ≤ 1

3
27

, 1 < x ≤ 2

21
27

, 2 < x ≤ 3

27
27

= 1 , 3 < x

and F (y) =





0 , y ≤ 0

8
27

, 0 < y ≤ 1

20
27

, 1 < y ≤ 2

26
27

, 2 < y ≤ 3

27
27

= 1 , 3 < y .

The random variables X and Y do not have medians and lower/upper quantiles. The modulus
of X is 2, and the modulus of Y is 1.

1.17 Two-dimensional discrete random variables
(random vectors)

Sometimes, it is necessary to consider two or more random variables defined on the same sample
space, at the same time. In the followings, we will present the case of two random variables; the
generalization to three or more variables can be achieved with no difficulty.
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Example 1.17.1. We consider the experiment consisting of distributing three balls a, b, c in
three boxes.

The following sample space is considered: S = {e1, e2, ..., e27}, where ei are given by:

e1 = {abc|0|0} e10 = {c|ab|0} e19 = {0|b|ac}
e2 = {0|abc|0} e11 = {0|ab|c} e20 = {a|0|bc}
e3 = {0|0|abc} e12 = {b|ac|0} e21 = {0|a|bc}
e4 = {ab|c|0} e13 = {0|ac|b} e22 = {a|b|c}
e5 = {ab|0|c} e14 = {a|bc|0} e23 = {a|c|b}
e6 = {ac|b|0} e15 = {0|bc|a} e24 = {b|c|a}
e7 = {ac|0|b} e16 = {c|0|ab} e25 = {b|a|c}
e8 = {bc|a|0} e17 = {0|c|ab} e26 = {c|a|b}
e9 = {bc|0|a} e18 = {b|0|ac} e27 = {c|b|a}.

The 27 events are equally probable and their probabilities are
1
27

.

Let X be the random variable which associates to the elementary event ei ∈ S the number of
non-empty boxes. We have X(ei) = 1 for i = 1, 2, 3, X(ei) = 2 for i = 4, 21, X(ei) = 3 for

i = 22, 27. Hence: P (X = 1) =
3
27

, P (X = 2) =
18
27

, P (X = 3) =
6
27

and the probability
distribution of the random variable X is:

X :
(

1 2 3
3
27

18
27

6
27

)
.

Let Y be the random variable associating to the elementary event ei ∈ S the number of
balls from the first box. We have: Y (e1) = 3, Y (ei) = 2, for i = 4 − 9, Y (ei) = 1 for i =

10, 12, 14, 16, 18, 20, 22 − 27, Y (ei) = 0 fori = 2, 3, 11, 13, 15, 17, 19, 21. Hence P (Y = 0) =
8
27

,

P (Y = 1) =
12
27

, P (Y = 2) =
6
27

, P (Y = 3) =
1
27

and the probability distribution of the
random variable Y is:

Y :
(

0 1 2 3
8
27

12
27

6
27

1
27

)
.

We now consider the random variable Z which associates to the elementary event ei ∈ S the pair
of numbers (number of non-empty boxes, number of balls from the first box). As the values of Z
are two-dimensional vectors, the random variable Z is called two-dimensional random variable.
We have: Z(e1) = (1, 3); Z(e2) = (1, 0); Z(e3) = (1, 0); Z(ei) = (2, 2), i = 4, 9; Z(ei) = (2, 1),
i=10, 12, 14, 16, 18, 20; Z(ei)=(2, 0), i=11, 13, 15, 17, 19, 21; Z(ei)=(3, 1), i=22, 27.

Therefore, the values of this random variable are the vectors (1, 3); (1, 0); (2, 2); (2, 1); (2, 0);
(3, 1). The corresponding probabilities are:

P (X = 1, Y = 3) =
1
27

; P (X = 1, Y = 0) =
2
27

; P (X = 2, Y = 2) =
6
27

;

P (X = 2, Y = 1) =
6
27

; P (X = 2, Y = 0) =
6
27

; P (X = 3, Y = 1) =
6
27

.

The probability distribution of Z is

Z :
(

(1, 3) (1, 0) (2, 2) (2, 1) (2, 0) (3, 1)
1
27

2
27

6
27

6
27

6
27

6
27

)
.
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In general, let’s consider two random variables X, Y defined on the same sample space
S = {e1, e2, ..., en}. Let x1, x2,..., xk be the values of the random variable X and y1, y2,
..., yl the values of the random variable Y .

Definition 1.17.1. Using the random variables X, Y we can build up the two-dimensional
random vector Z = (X, Y ), whose values are the ordered pairs (xi, yj) (two dimensional
vectors), and the corresponding probabilities are

rij = P (X = xi and Y = yj) , 1 ≤ i ≤ k, 1 ≤ j ≤ l.

The probability distribution of Z is given by the following table:

X�Y y1 y2 y3 ... yj ... yl P (X = xi)
x1 r11 r12 r13 ... r1j ... r1l p1

x2 r21 r22 r23 ... r2j ... r2l p2

x3 r31 r32 r33 ... r3j ... r3l p3
...

...
...

...
...

...
...

xi ri1 ri2 ri3 ... rij ... ril pi
...

...
...

...
...

...
...

xk rk1 rk2 rk3 ... rkj ... rkl pk

P (Y = yj) q1 q2 q3 ... qj ... qk 1

As the events (X = xi;Y = yj) form a partition of the sample space , the sum of the probabilities
from this table must be equal to 1:

k∑

i=1

l∑

j=1

rij = 1.

If we know the probability distribution of the random vector Z = (X, Y ), we can easily find
the probability distribution of each component X and Y . Sice the events (X = xi, Y = y1),
(X = xi, Y = y2), ..., (X = xi, Y = yl), 1 ≤ i ≤ k are incompatible two by two, and

(X = xi) = (X = xi, Y = y1) ∪ (X = xi, Y = y2) ∪ ... ∪ (X = xi, Y = yl),

we have:

pi = P (X = xi) = ri1 + ri2 + ... + rik =
l∑

j=1

rij , 1 ≤ i ≤ k.

Similarly, we obtain:

qj = P (Y = yj) = r1j + r2j + ... + rkj =
k∑

i=1

rij , 1 ≤ j ≤ l.

It follows that in order to obtain the probability that X (Y ) takes the value xi (yj), we will sum
up the probabilities from the line (column ) of xi (yj).

Hence, the random variable X (Y ) is associated with the probability distribution given by the
marginal column (line) of the previous table. For this reason, the first column (line) together
with the last column (line) of the table form the marginal probability distribution of the
random variable X (Y ).

Definition 1.17.2. The variable X, given Y = yj has the probability distribution:
(

x1 x2 ... xi ... xk

P (x1|yj) P (x2|yj) ... P (xi|yj) ... P (xk|yj)

)
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where
P (xi|yj) = P (X = xi|Y = yj) =

P (X = xi, Y = yj)
P (Y = yj)

=
rij

qj
, 1 ≤ j ≤ l.

Similarly, the variable Y , given X = xi has the probability ditribution:
(

y1 y2 ... yj ... yl

P (y1|xi) P (y2|xi) ... P (yj |xi) ... P (yl|xi)

)

where
P (yj |xi) = P (Y = yj |X = xi) =

P (Y = yj , X = xi)
P (X = xi)

=
rij

pi
, 1 ≤ i ≤ k.

We have:
k∑

i=1

P (xi|yj) =
1
qj

k∑

i=1

rij = 1

and
l∑

j=1

P (yj |xi) =
1
pi

l∑

j=1

rij = 1.

1.18 The distribution function of a random vector

Definition 1.18.1. We call distribution function of the random vector (X, Y ) the function
defined by

F (x, y) = P (X < x and Y < y) =
∑
xi<x

∑
yj<y

P (X = xi and Y = yj) =
∑
xi<x

∑
yj<y

rij

where rij = P (X = xi and Y = yj).

Proposition 1.18.1. The distribution function of the random vector (X, Y ) satisfies the
following properties:

i) F (xi + 0, yj + 0) =
i∑

m=1

j∑

s=1

pms , F (xi + 0, yj − 0) =
i∑

m=1

j−1∑

s=1

pms

F (xi − 0, yj + 0) =
i−1∑

m=1

j∑

s=1

pms , F (xi − 0, yj − 0) =
i−1∑

m=1

j−1∑

s=1

pms.

ii) F (x2, y) ≥ F (x1, y) if x2 > x1,
F (x, y2) ≥ F (x, y1) if y2 > y1.

iii) F (x,−∞) = F (−∞, y) = 0 and F (∞,∞) = 1.

iv) F (x,∞) is the distribution function of the random variable X,
F (∞, y) is the distribution function of the random variable Y .

v) As

P (Y < y|X = xi) =
P (Y < y, X = xi)

P (X = xi)
=

F (xi + 0, y)− F (xi − 0, y)
F (xi + 0,∞)− F (xi − 0,∞)

,

the distribution function of the random variable Y |X = xi is:

F (xi + 0, y)− F (xi − 0, y)
F (xi + 0,∞)− F (xi − 0,∞)

.
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Proof. using Definition 1.18.1.

Definition 1.18.2. We say that the random variables X and Y are independent if for every
pair (i, j) we have

rij = pi · qj .

Proposition 1.18.2. If the random variables X, Y are independent, then:

1. the conditional distributions are the same as the marginal distributions:

P (xi|yj) =
rij

qj
=

pi · qj

qj
= pi,

P (yj |xi) =
rij

pi
=

pi · qj

pi
= qj .

2. F (x, y) =
∑
xi<x

∑
yj<y

rij =
∑
xi<x

∑
yj<y

pi · qj =

(∑
xi<x

pi

)
·
(∑

yi<y

qj

)
= F (x,∞) · F (y,∞).

1.19 Expected value. Variance. Moments. (for discrete one-
dimensional random variables)

Definition 1.19.1. The expected value (or mean) of a random variable X with the distribu-
tion:

X :
(

x1 x2 ... xn

p1 p2 ... pn

)
,

is the number

E(X) =
n∑

i=1

xi pi.

Proposition 1.19.1. The expected value of a random variable has the following properties:

1. The expected value of a constant random variable is equal to the constant itself:

E(a) = a.

2. The expected value of the product of a constant a and a random variable X, is equal to the
product of a and the expected value of X:

E(a ·X) = a · E(X).

3. The expected value of the sum of two random variables X and Y is equal to the sum of
their expected values:

E(X + Y ) = E(X) + E(Y ).

4. The expected value of the product of two independent random variables is equal to the
product of the expected values of the two random variables:

E(X · Y ) = E(X) · E(Y ).
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5. The expected value of the random variable X satisfies:

inf X ≤ E(X) ≤ supX.

6. The expected value of the deviation from the mean of the random variable, is equal to zero:

E(X − E(X)) = 0.

Proof. The proof of these properties is based on the definition and it is left to the reader.

Example 1.19.1. We roll a die. The random variable X is ”the number of dots that appear”.
The expected value of this random variable is

E(X) = 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

=
7
2

= 3.5.

We roll k dies. Let Y be the total number of dots that appear. The expected value of this

random variable is E(Y ) =
7k

2
.

Example 1.19.2. We toss a coin three times. Let X (Y ) be the random variable which gives
the number of heads from the first (last) two tosses. Show that:

1. E(X) = E(Y ) = 1;

2. E(X · Y ) =
5
4
;

3. E( 1
1+Y ) =

7
12

;

4.
X

1 + Y
has the distribution

X

1 + Y
:




0 1
3

1
2

2
3 1

2
8

1
8

2
8

1
8

2
8


 .

Example 1.19.3. We roll a die two times. Let X (Y ) be the random variable which gives the
number from the first (second) rolling. Show that:

1. E(X · Y ) = E(X) · E(Y );

2. E(X
Y ) = E(X) · E( 1

Y ).

Definition 1.19.2. By definition, the variance of the random variable X is the expected value
of the square of the deviation X −E(X):

V (X) = E
[
(X − E(X))2

]
.

The variance is usually denoted V (X) or σ2(X).

Proposition 1.19.2. The variance of a random variable has the following properties:

1. The variance of a constant random variable is zero:

V (a) = 0.
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2. The variance of the product of a constant and a random variable X is equal to the product
of the square of the constant and the variance of the variable X:

V (a ·X) = a2 · V (X).

3. The variance of the sum of two independent random variables is equal to the sum of the
variances of the two random variables:

V (X + Y ) = V (X) + V (Y ).

4. For all L > 0 we have the following inequality:

P [|X − E(X)| < L] ≥ 1− V (X)
L2

(Chebyshev’s inequality).

Proof. The proof of the properties 1-3 is left to the reader.

We only prove 4.

We consider

X :
(

x1 x2 ... xn

p1 p2 ... pn

)

and

σ2 =
n∑

i=1

pi · (xi −E(X))2 =
n∑

i=1

pi α
2
i where αi = xi −E(X).

We can admit that α2
i are ordered:

α2
1 ≤ α2

2 ≤ ... ≤ α2
n.

We interpolate L between two values α2
i , α2

i+1, that is:

α2
1 ≤ α2

2 ≤ ... ≤ α2
i ≤ L ≤ α2

i+1 ≤ ... ≤ α2
n.

If in the expression of σ2 we put zero for all α2
j ≤ L and replace with L all α2

j ≥ L, we obtain:

σ2 ≥ L [pi+1 + ... + pn]

or

pi+1 + ... + pn ≤ σ2

L
.

The sum pi+1 + ...+pn represents the probability that the deviation is greater or equal to L and
so

P [|X − E(X)| ≥ L] ≤ σ2

L
.

From
P [|X − E(X)| ≥ L] + P [|X − E(X)| < L] = 1

we have the inequality in 4.

Remark 1.19.1. If L = k · σ then:

P [|X −E(X)| < k · σ] ≥ 1− 1
k2

.

If k = 3 we have
P [|X − E(X)| < 3σ] ≥ 8

9
.
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This means that 89% (8
9) of the absolute deviations of the variable X do not exceed 3σ (the

”three sigma” rule).

So we observe that the variance works as a concentration indicator of the deviations around the
expected value.

Problem 1.19.1. Determine the variances for the random variables in the Examples 1.19.1,
1.19.2, 1.19.3.

Definition 1.19.3. By definition, the standard deviation of a random variable X is the
square root of the variance of this variable; we will denote it D(X) or µ or σ:

D(X) =
√

V (X).

The standard deviation has the same measurement units as the random variable we considered.

Definition 1.19.4. We call the kth moment of a random variable X, the expected value of
the variable Xk. If we denote such a moment by µ′k, we can write:

µ′k = E(Xk) =
n∑

i=1

pi · xk
i .

Definition 1.19.5. The kth central moment of a random variable X is the espected value of
the random variable [X −M(X)]k. If we denote these moments by µk, we can write:

µk = E[X − E(X)]k.

In particular we have:

µ1 = E[X − E(X)] = 0 , µ2 = E[X − E(X)]2 = V (X).

Proposition 1.19.3. The moments and the central moments satisfy the relationship:

µk = µ′k − C1
k µ′1 µ′k−1 + C2

k (µ′1)
2 µ′k−2 + ... + (−1)k(µ′1)

k.

Proof. By definition µk = M(X − µ′1)
k. But

(X − µ′1)
k = Xk − C1

kµ′1X
k−1 + C2

k(µ′1)
2Xk−2 − ... + (−1)k(µ′1)

k.

So:

µk = E(X − µ′1)
k = E(Xk)− C1

k µ′1 E(Xk−1) + C2
k (µ′1)

2 E(Xk−2)− ... + (−1)k(µ′1)
k.

Based on this formula, for k = 2, we have

µ2 = µ′2 − (µ′1)
2,

that is, the variance is equal to the difference between the second moment and the square of the
first moment.

If we put successively k = 3, 4, we have

µ3 = µ′3 − 3µ′1µ
′
2 + 2(µ′1)

3,

µ4 = µ′4 − 4µ′1µ
′
3 + 6(µ′1)

2µ′2 − 3(µ′1)
4.
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1.20 Covariance. Correlation coefficient

Definition 1.20.1. If X and Y are random variables defined on the same sample space S, we
call covariance of the variables X and Y , the number

Cov(X, Y ) = E ([X−E(X)][Y −E(Y )]) =
∑

x∈VX

∑

y∈VY

(x−E(X)) · (y−E(Y )) · P (X =x, Y =y)

where VX and VY are the sets of values of the random variables X and Y .

Proposition 1.20.1. The following equality takes place:

Cov(X,Y ) = E(X · Y )− E(X) · E(Y ).

Proof. We can write :

Cov(X,Y )=
∑

x∈VX

∑

y∈VY

(x−E(X)) · (y−E(Y )) · P (X =x, Y =y) =

=
∑

x∈VX

∑

y∈VY

x · y · P (X =x, Y =y)−E(Y )
∑

x∈VX

x
∑

y∈VY

P (X =x, Y =y)−

−E(X)
∑

y∈VY

y
∑

x∈VX

P (X =x, Y =y) +
∑

x∈VX

∑

y∈VY

E(X) E(Y ) P (X =x, Y =y) =

=E(X · Y )− E(Y ) ·
∑

x∈VX

x · P (X =x)−E(X) ·
∑

y∈VY

y · P (Y =y)+

+ E(X) E(Y )
∑

x∈VX

∑

y∈VY

P (X =x, Y =y) =

=E(X · Y )− E(Y ) · E(X)− E(X) · E(Y ) + E(X) · E(Y ) =
=E(X · Y )− E(X) · E(Y ).

Proposition 1.20.2. If X and Y are independent random variables, then:

Cov(X, Y ) = 0.

Proof. Immediate, based on Proposition 1.20.1.

Proposition 1.20.3. If X1, X2, ..., Xn are n random variables defined on the same sample
space, then:

V

(
n∑

i=1

Xi

)
=

n∑

i=1

V (Xi) + 2
∑

i<j

Cov(Xi, Xj).
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Proof. We will prove the proposition for n = 3. We have:

V (X1 + X2 + X3) =E((X1 −E(X1) + X2 − E(X2) + X3 − E(X3))
2) =

=E[(X1 − E(X1))2 + (X2 − E(X2))2 + (X3 − E(X3))2+
+ 2(X1 −E(X1))(X2 −E(X2)) + 2(X1 − E(X1))(X3 − E(X3))+
+ 2(X2 −E(X2))(X3 −E(X3))] =

=E(X1 −E(X1))2 + E(X2 − E(X2))2 + E(X3 −E(X3))2+
+ 2E[(X1 −E(X1))(X2 − E(X2))]+
+ 2E[(X1 −E(X1))(X3 − E(X3))]+
+ 2E[(X2 −E(X2))(X3 − E(X3))] =

=
3∑

i=1

V (Xi) + 2
∑

1≤i<j≤3

Cov(Xi, Xj).

Definition 1.20.2. If X and Y are two variables defined on the same sample space S, we call
correlation coefficient of the variables X and Y , the number

ρ(X, Y ) =
E[(X −E(X)) · (Y − E(Y ))]√

V (X) · V (Y )
=

Cov(X,Y )
σ(X) · σ(Y )

.

Remark 1.20.1. If X1, X2, ..., Xn are n random variables defined on the sample space S, then:

V

(
n∑

i=1

Xi

)
=

n∑

i=1

V (Xi) + 2
∑

i<j

σ(Xi) · σ(Xj) · ρ(Xi, Xj).

where σ(Xi) =
√

V (Xi).

Example 1.20.1. In a library, there are books numbered from 1 to n. We randomly take out
the books. We say we have a meeting, if the number from the book is the same as the extraction
number. Compute the expected value and the variance for the total number of meetings.

Solution: We associate to each book a random variable Xi, i = 1, 2, ..., n, defined as follows:
if the book has the number i at the ith extraction, then Xi = 1, in the rest of the situations

Xi = 0. The probability to obtain the book number i at the ith extraction is P (Xi) =
1
n

,
because there is only one book with this number among the other n in the library. As each
variable Xi can only take the values 1 or 0, we have that:

P (Xi = 0) = 1− P (Xi = 1) = 1− 1
n

.

From here we have that the distribution of the random variable Xi is:

Xi :
(

1 0
1
n 1− 1

n

)
.

We have E(Xi) =
1
n

, from where V (Xi) = E(X2
i )− E2(Xi) =

1
n
− 1

n2
=

n− 1
n2

.

The total number of meetings is given by the random variable

Y = X1 + X2 + ... + Xn.
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We have:
E(Y ) =

1
n

+
1
n

+ ... +
1
n

= 1

and

V (Y ) =
n∑

i=1

V (Xi) + 2
∑

i<j

Cov(Xi, Xj).

To compute the covariance, we have:

Cov(Xi, Xj) = E(Xi ·Xj)− E(Xi) · E(Xj)

and
E(Xi ·Xj) = 1 · P (XiXj = 1) + 0 · P (XiXj = 0) =

(n− 2)!
n!

=
1

n(n− 1)
,

because Xi · Xj = 1 if and only if the book with the numbers i and j have been extracted at
their turn, and there are (n− 2)! arrangements in which this event can take place.

So, if i 6= j, we have:

Cov(Xi, Xj) =
1

n(n− 1)
− 1

n
· 1
n

=
1

n2(n− 1)
.

Taking into consideration the results obtained so far, we have:

V (Y ) = n · V (Xi) + n(n− 1) Cov(Xi, Xj) = n · n− 1
n2

+ n(n− 1) · 1
n2(n− 1)

= 1.

1.21 Convergence of sequences of random variables.

We consider a sequence of random variables X1, X2, ..., Xn, ... defined on the same sample
space S.

In the probability theory we can find different concepts of convergence for the sequences of
random variables (Xn)n.

Definition 1.21.1. We say that the sequence of random variables (Xn) converges surely or
everywhere towards X if

lim
n→∞Xn(e) = X(e) ∀e ∈ S.

Definition 1.21.2. We say that the sequence of random variables (Xn) converges towards X
in probability, if

lim
n→∞P (|Xn −X| < ε) = 1

for all ε > 0.

Definition 1.21.3. We say that the sequence of random variables (Xn) converges almost
surely towards the random variable X, if

P
(

lim
n→∞Xn = X

)
= 1.

Definition 1.21.4. Let Fn(x) be the distribution function of the variable Xn, (n = 1, 2, ...) and
F (x) the distribution function of the variable X. The sequence Xn converges towards X in
distribution if

lim
n→∞Fn(x) = F (x).
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Definition 1.21.5. If
lim

n→∞D2(Xn −X) = 0,

we say that the sequence Xn converges in mean square to X.

Proposition 1.21.1. If the sequence Xn converges in mean square to X, then Xn converges to
X in probability.

Proof. From Chebyshev’s inequality we have

1− V (Xn −X)
ε

≤ P (|Xn −X| < ε) ≤ 1,

from where, passing to the limit when n → ∞, we obtain that if V (Xn − X)−−−−→n→∞ 0, then
P (|Xn −X| < ε)−−−−→n→∞ 1

Proposition 1.21.2. If the sequence Xn converges almost surely to X, then Xn −−−−→n→∞X in
probability.

Proof. If Xn −−−−→n→∞X almost surely, then for all ε > 0 we have

lim
N→∞

P

(
sup
n≥N

|Xn −X| > ε

)
= 0.

It follows from here that
lim

n→∞P (|Xn −X| > ε) = 0.

Proposition 1.21.3. If V (Xn−X)−−−−→n→∞ 0 and
∞∑

i=1

E(Xn−X)2 < +∞, then Xn −−−−→n→∞X almost

surely.

1.22 Law of large numbers

Theorem 1.22.1 (Chebyshev). Let (Xn) be a sequence of random variables defined on a sample
space S. If the random variables are independent and V (Xn) ≤ c, ∀n, then for all ε > 0 we have

lim
n→∞P (|X̄n −E(X̄n)| < ε) = 1,

where X̄n = 1
n(X1 + X2 + ... + Xn).

Proof. From Chebyshev’s inequality we have:

1− V (X̄n)
ε

≤ P (|X̄n − E(X̄n)| < ε) ≤ 1.

Because

V (X̄n) =
1
n2

n∑

i=1

V (Xj) ≤ nc

n2
=

c

n
,

we obtain
1− c

n
≤ P (|X̄n −E(X̄n)| < ε) ≤ 1
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and from here
lim

n→∞P (|X̄n −E(X̄n)| < ε) = 1.

Remark 1.22.1. Chebyshev’s Theorem shows that even if the independent random variables
can take values far away from their expected values, the arithmetic mean of a sufficiently large
number of such random variables takes, with a large probability, values in the neighborhood

of the constant
1
n

n∑

j=1

E(Xj). So, there is a big difference between the behavior of the random

variables and their arithmetic mean. In the case of the random variables we cannot predict their
value with a large probability, while, in the case of their arithmetic mean we can give its value
with a probability close to 1.

The arithmetic mean of a sufficiently large number of random variables loses the property of
being a random variable

Theorem 1.22.2 (Bernoulli). We suppose we make n independent experiences, in each expe-
rience the probability of the event A being p, and let ν be the number of times the event A is
accomplished during the n experiences. For each ε we have

lim
n→∞P

(∣∣∣ν
n
− p

∣∣∣ < ε
)

= 1.

Proof. We associate to each experience a random variable Xj which takes the value 1 if the
event has been accomplished in the jth experience, and 0 if it hasn’t. So, the number of the
accomplishments of the event A during the n experiences is given by

ν = X1 + X2 + ... + Xn

where each of the variables X1, X2, ..., Xn has the distribution

Xi :
(

1 0
p 1−p

)
.

It follows from here that: E(Xi) = p, V (Xi) = p (1−p), and E(ν) = np, V (X) = n p (1−p).

Considering Chebyshev’s inequality for the variable 1
nν we have:

P
(∣∣∣ν

n
−E

(ν

n

)∣∣∣ < ε
)
≥ 1− V ( ν

n)
ε2

or

P
(∣∣∣ν

n
− p

∣∣∣ < ε
)
≥ 1− p (1− p)

nε2
.

Taking into account that p (1−p) ≤ 1
4 , we get

P
(∣∣∣ν

n
− p

∣∣∣ < ε
)
≥ 1− 1

4nε2
.

Passing to the limit, we come to

lim
n→∞P

(∣∣∣ν
n
− p

∣∣∣ < ε
)

= 1,

which proves the theorem.
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Remark 1.22.2. If we have a large population, if we make a selection of volume n and get ν
favorable results, we can state, with a probability near to 1, that the probability of the studied
event is given by the relative frequency.

Thus, in the study of large populations for which we cannot determine the probability of
accomplishing an event a priori, we can express this probability by means of relative frequency
of the considered event, ν

n , which theoretically justifies the use of the relative frequency instead
of the probability.

Example 1.22.1. We toss a coin n times. Hoe large should n be, so that the probability of the
inequality ∣∣∣∣

α

n
− 1

2

∣∣∣∣ <
1

100

is larger than 0.99, knowing that α is the number of times a face (before-chosen) appears.

Solution: Having no reason to suppose one face has a greater chance to occur than another
one, we have that α ∼ n

2 .

thus E(α) = n
2 , V (α) = n

4 , E(α
n ) = 1

2 , V (α
n ) = 1

4n .

it follows, from Chebyshev’s inequality, that:

P

(∣∣∣∣
α

n
− 1

2

∣∣∣∣ <
1

100

)
≥ 1− D2(α

n )
1

102

.

We infer that, as P

(∣∣∣∣
α

n
− 1

2

∣∣∣∣ <
1

100

)
> 0.99, it is sufficient to enforce

1− V (α
n )

1
102

> 0.99 ⇒ 1− (100)2

4n
>

99
100

⇒ 4n > 106 ⇒ n > 250.000.

1.23 Binomial distribution

We consider an experiment whose sample space is made up of two elementary events S1 =
{e1, e2}, with probabilities

P ({e1}) = p and P ({e2}) = 1− p,

where p is a number in the interval [0, 1].

We assume that we repeat the experiment for n times and we consider the cartesian product:

S = S1 × S1 × ...× S1︸ ︷︷ ︸
n times

that is the set of elements of the form (ei1 , ei2 , ..., ein) where ij is 0 or 1.

The sample space S has 2n elements. We define the probability P on S as follows:

P ({(ei1 , ei2 , ..., ein)}) = P1({ei1}) · P1({ei2}) · ... · P1({ein}).

Let Ak, k = 0, 1, ..., n, be the event of those (ei1 , ei2 , ..., ein) which have k elements of 1. (Ak is
the event which consists of k successes).
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Proposition 1.23.1.
P (Ak) = Ck

n · pk · (1− p)1−k.

Proof. The number of systems of the form (ei1 , ei2 , ..., ein) containing k numbers of 1 is Ck
n.

Remark 1.23.1. The events A1, A2, ..., An are mutually exclusive and their union is the sure
event, thus:

A0 ∪A1 ∪ ... ∪An = S
and

P (A0) + P (A1) + ... + P (An) = 1.

the probabilities P (A0), P (A1), ..., P (An) can be useful in defining a distribution in a sample
space of n + 1 points, in which the kth event is Ak.

Definition 1.23.1. The random variable X having the distribution

X :
(

0 1 ... k ... n
C0

np0(1−p)n C1
np1(1−p)n−1 ... Ck

npk(1−p)n−k ... Cn
npn(1−p)0

)

is called binomial variable it is usually denoted by B(n, p) (or X ∼ B(n, p)).

The term ”binomial random variable” comes from the fact that the probabilities

b(k; n, p) = Ck
npk(1− p)n−k

are consecutive terms from the expansion [p + (1− p)]n.

Remark 1.23.2. The choices of p and n uniquely determine the binomial distribution; different
choices lead to different distributions.

Definition 1.23.2. The set of all binomial distributions is called the family of binomial
distributions.

Remark 1.23.3. Binomial distributions have been analyzed by James Bernoulli. The diagram
he gave and which models a large number of real phenomena, is: consecutive independent
extractions from an urn containing a white and b black balls, a and b remain the same during
the extractions (the balls are put back in the urn). The probability to extract a white ball is

p =
a

a + b
and that of extracting a black one: 1− p = q =

b

a + b
.

Proposition 1.23.2. The random variable X ∼ B(n, p) has the following properties:

1. E(X) = n · p;
2. V (X) = n · p · (1− p);

3. If we denote by Mo the modulus of the variable X (the most probable value), then:

np− (1− p) ≤ Mo ≤ np + p.

Proof. By computation.

Proposition 1.23.3. If X1 ∼ B(n1, p), X2 ∼ B(n2, p) and X1, X2 are independent, then

1. X1 + X2 ∼ B(n1 + n2, p);
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2. P (X1 = k|X1 + X2 = n) =
Ck

n1
· Cn−k

n2

Cn
n1+n2

, for max(0, n1 − n2) ≤ k ≤ min(n1, n).

Proposition 1.23.4. The distribution function for the variable X ∼ B(n, p) is:

F (x) =





0 , x ≤ 0
(1−p)n , 0 < x ≤ 1
(1−p)n + C1

n p (1−p)n−1 , 1 < x ≤ 2
. . . . . . . . .
(1−p)n + C1

n p (1−p)n−1 + ... + Ck
n pk (1−p)n−k , k < x ≤ k + 1

. . . . . . . . .
1 , x > n.

1.24 The Poisson distribution as an approximation of the bino-
mial distribution

Binomial distributions b(k; n, p) = Ck
npk(1− p)n−k are often hard to compute. The tables built

for such probabilities depend on two parameters, n and p. In some conditions we can find simple
expressions, which approximate the probabilities b(k;n, p) for n → ∞, and the approximation
is acceptable even for small values of n.

In the following we will present such approximations.

In the beginning we will prove a theorem concerning the binomial distribution for a large n and
a reasonably large n · p.

Theorem 1.24.1 (Poisson). If n·pn → λ, then

b(k; n, p) → λk

k!
e−λ.

Proof. We have:

b(k;n, pn) =
1
k!

n (n− 1) ... (n− k + 1) · pk
n (1− pn)n−k =

=
1
k!
· n

n
· n− 1

n
· ... · n− k + 1

n
· (n pn)k (1− pn)n−k.

Because
n

n
· n− 1

n
· ... · n− k + 1

n
−−−−−−−−→n→∞ 1 and (n pn)k −−−−−−−−→n→∞ λk

proving the theorem comes to proving that

(1− pn)n−k −−−−−−−−→n→∞ e−λ.

Because
(1− pn)n−k = (1− pn)n (1− pn)−k

and (1− pn)−k −−−−−−−−→n→∞ 1 and pn −−−−−−−−→n→∞ 0, it is sufficient to prove that

(1− pn)n −−−−−−−−→n→∞ e−λ.

It is known that
(
1− a

n

)n
−−−−−−−−→n→∞ e−a and the convergence is uniform on each finite interval

a0 < a < a1.
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All the numbers n pn can be restrained to such an interval around λ and thus ∀ε > 0, ∃n1(ε) so
that ∀n > n1(ε) we have ∣∣∣

(
1− n pn

n

)n
− e−n pn

∣∣∣ < ε.

From the continuity of the function e−x for n > n2(ε) we have:

|e−n pn − e−λ| < ε.

So, for n > n(ε) = max(n1(ε), n2(ε)), we have:

|(1−pn)n−e−λ| =
∣∣∣
(
1−n pn

n

)n
−e−λ

∣∣∣ =
∣∣∣
(
1−n pn

n

)n
−e−n pn +e−n pn−e−n pn

∣∣∣ ≤

≤
∣∣∣
(
1−n pn

n

)n
−e−n pn

∣∣∣ + |e−n pn−e−λ| < 2ε,

which proves the theorem.

Definition 1.24.1. The random variable X with the probability mass function (probability
function)

p(k, λ) = P (X = k) =
λk

k!
e−λ , k = 0, 1, 2, ...

is called Poisson variable with parameter λ, and we denote it by X ∼ Pois(λ).

Example 1.24.1. 3% of the screws produced by a machine are out of order, the technical hitches
occurring randomly during the production process.If the screws are packed in boxes containing
each 100 pieces, which is the probability that a box shall have x screws that are out of order?

Solution: The probability is given by the binomial probability mass function

b

(
x; 100,

3
100

)
= Cx

100 ·
(

3
100

)x

·
(

1− 3
100

)100−x

, x = 0, 1, 2, ..., 100.

in this case n = 100, p = 0.03 and n p = 3, and the Poisson approximation for b(x; 100, 3
100) is

b

(
x; 100,

3
100

)
=

3x · e−3

x!
.

Remark 1.24.1. The Poisson distribution occurs in different situations, for example:

• it gives the probabilities of a given number of phone calls in a certain time interval;

• it gives the probabilities of a given number of flaws on a length unit of a wire;

• it gives the probabilities of a specific number of faults on an area unit of a fabric;

• it gives the probabilities of a specific number of bacteria in a volume unit of a solution;

• it gives the probabilities of a specific number of accidents on time unit.

Let us see how the Poisson distribution occurs in one of the before mentioned situations.

Example 1.24.2. We consider a wire of length L and suppose that the probability of a flaw on
a ∆L long part is λ ·∆L. We admit that this probability is independent of the position of the
∆L part.

We divide the wire of length L in ∆L =
L

n
long parts and we have:
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1. the probability of a flaw along the ∆L part is λ ·∆L.

2. the probability of having no flaw along the ∆L part is 1− λ ·∆L.

3. the probability of having two or more flaws along the ∆L part is Θ(∆L), so that
Θ(∆L)

∆L
→ 0 when ∆L → 0.

The event of having x flaws along a L + ∆L part, is the reunion of the following events:

a) there are x flaws on the L-long part and no flaws on the ∆L-long part;

b) there are x− 1 flaws on the L-long part and one flaw on the ∆L-long part;

c) there are x− i flaws on the L-long part and i flaws on the ∆L-long part.

The probabilities of these events are: Px(L) · [1− λ ·∆L], Px−1(L) · λ ·∆L and Θ(∆L). So

P (L + ∆L) = Px(L) · [1− λ ·∆L] + Px−1(L) · λ ·∆L + Θ(∆L) , x = 1, 2, ...

and
P0(L + ∆L) = P0(L) · [1− λ ·∆L] + Θ(∆L).

These equalities can be written as:

Px(L + ∆L)− Px(L)
∆L

= λ [Px−1(L)− Px(L)] +
Θ(∆L)

∆L
, x = 1, 2, ...

P0(L + ∆L)− P0(L)
∆L

= −λPx(L) +
Θ(∆L)

∆L
.

For ∆L → 0 we get:
dPx

dL
= λ [Px−1(L)− Px(L)]

dP0

dL
= −λP0(L).

If we impose P0(0) = 1 and Px(0) = 1, x > 1, we have:

Px(L) =
(λ L)x e−λL

x!
, x = 0, 1, 2, ...

which is the probability mass function with λ′ = λ L.

Theorem 1.24.2. If X and Y are Poisson distributed independent random variables of
parameters µ and ν, then X + Y ∼ Pois(µ + ν).

Proof. We have

P (X = x) =
µx · e−µ

x!
, x = 0, 1, 2, ...

P (Y = y) =
νy · e−ν

y!
, y = 0, 1, 2, ...

and as X and Y are independent:

P (X = x, Y = y) = P (X = x) · P (Y = y) =
µxνy · e−(µ+ν)

x! y!
.
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Let there be Z = X + Y and g(z) = P (Z = z). The value g(z) is obtained by summing up
P (X = x, Y = y) after all the pairs (x, y) with x + y = z, that is, after all the pairs (x, z − x).
So

g(z) =
z∑

x=0

P (X = x, Y = z − x) = e−(µ+ν)
z∑

x=0

µx νz−x

x! (z − x)!
=

=

e−(µ+ν) νz
z∑

x=0

Cx
z

(µ

ν

)x

z!
=

e−(µ+ν) νz
(
1 +

µ

ν

)z

z!
=

=e−(µ+ν) (µ + ν)z

z!
, z = 0, 1, 2, ...

Proposition 1.24.1. The distribution function of the variable X ∼ Pois(λ) is:

F (x) =





0 , x ≤ 0
. . . . . . . . .

k∑

j=1

λj

j!
e−λ , k < x ≤ k + 1

. . . . . . . . .
1 , n < x.

Proposition 1.24.2. If X ∼ Pois(λ), then

1. λ− 1 < Mo < λ;

2. E(X) = V (X) = λ.

1.25 The multinomial distribution

A box contains N = N1 + N2 + .... + Nk balls, out of which: N1 have the color 1, N2 have the

color 2, ..., Nk have the color k. The probability to extract a ball from the box is
1
N

. The

probability to extract a ball of color i from the box, is pi =
Ni

N
. This kind of box is called

Bernoulli’s ...urna lui Bernoulli cu mai multe st’ari.

Let Ai be the event consisting of extracting a ball of color i from the box, 1 ≤ i ≤ k.

Proposition 1.25.1. The probability that in n independent extractions (each of them being able
to give rise to one of the k events, A1, A2, ..., Ak) the Ai occurs ni times, is

Pn(n1, n2, ..., nk) =
n!

n1! n2! ... nk!
· pn1

1 pn2
2 ... pnk

k .

Proof. We suppose that the n balls extracted are in the following order

A1...A1︸ ︷︷ ︸
n1 times

A2...A2︸ ︷︷ ︸
n2 times

... Ak...Ak︸ ︷︷ ︸
nk times

.

Because Ai are independent, the probability of this event is pn1
1 pn2

2 ... pnk
k . Because the succession

of the events A1, ..., Ak is arbitrary, we have to see in how many ways we can write n symbols,
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n1 of them equal to A1, n2 equal to A2, ..., nk equal to Ak. This number is given by the number
of the permutations with repetitions, and this is

n!
n1! n2! ... nk!

.

So, the sought probability is

Pn(n1, n2, ..., nk) =
n!

n1! n2! ... nk!
· pn1

1 pn2
2 ... pnk

k .

Because
1 = (p1 + p2 + ...pk)n =

∑
n1,...,nk

n!
n1! n2! ... nk!

· pn1
1 pn2

2 ... pnk
k

we have that ∑
n1,...,nk

Pn(n1, n2, ..., nk) = 1

where nj can take all the possible values, such that nj ≥ 0 and
k∑

j=1

nj = n.

Definition 1.25.1. A vector (n1, n2, ..., nk) having the probability mass function

Pn(n1, n2, ..., nk) =
n!

n1! n2! ... nk!
· pn1

1 pn2
2 ... pnk

k .

is called multinomial. Its corresponding distribution is called multinomial distribution and
is denoted M(n; p1, p2, ..., pn).

1.26 Geometric distribution. Negative binomial distribution

When we defined the binomial distribution, we considered the representation of an experience
with two possible results: success (S) and failure (F ). We fixed a number of n experiences
and determined the distribution of the numbers of successes during n repeats. We called this
distribution the binomial distribution.

In what comes, we consider the situation in which the total number of events is not given afore.

We repeat the experience until we obtain r successes, r being fixed afore; the number of failures
(x) and the total number of events (x + r) are variable.

Let X be the variable of the ”total number of failures before r successes are accomplished”. We
want to find the probability mass function f(x) of the variable X.

First of all, we consider the case r = 1. Then f(x) is the probability to have x failures before
the first success. This event can be realized in a single way: ”we must obtain failures in the first
x replays of the experience and then a success for the x + 1th experience”. Because the replays
of the experience are independent, we have

P (I, I, ..., I︸ ︷︷ ︸
x times

, S) = (1− p) (1− p) ... (1− p)︸ ︷︷ ︸
x times

p ,

where p is the probability to have a success. So,

f(x) = (1− p)x · p , x = 0, 1, 2, ...
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Definition 1.26.1. The random variable X having the probability mass function

f(x) = (1− p)x · p

is called geometric variable, and (x, f(x)), x = 0, 1, 2, ... is called geometric distribution.

As 0 < p < 1, we have

∞∑

x=0

f(x) = p [1 + (1− p) + (1− p)2 + ...] =
p

1− (1− p)
= 1.

In the general case, f(x) is the probability to obtain exactly x failures before the rth success.
To carry out this event, we must obtain a success in the experience r + x, and r − 1 successes
and x failures in the previous r + x − 1 experiences. the probability to have r − 1 successes in
the first r + x− 1 experiences is

Cr−1
r+x−1 · pr−1 (1− p)x ,

where the probability to have a success in the experience r + x is p.

Because the experiences are independent, the sought probability is

f(x) = Cr−1
r+x−1 · pr−1 (1− p)x , x = 0, 1, 2, ...

Definition 1.26.2. The variable X having the probability mass function

f(x) = Cr−1
r+x−1 · pr−1 (1− p)x

is called the negative binomial variable, and (x, f(x)) the negative binomial distribution.

Proposition 1.26.1. If X, Y are independent random variables, with negative binomial
distributions of parameters (r1, p), respectivly (r2, p), then the variable X + Y has a negative
binomial distribution with parameters (r1 + r2, p).

1.27 Continuous random variables

The lengths and the theoretic time can take any real value in an interval. If the values of a
random variable are such entities, then the probability function is defined on an interval, and
associates ”probabilities” to all the events of this interval, not only to a finite number of points
(point-probabilities).

Example 1.27.1. If a clock stops randomly, what is the probability that the hand indicating
the hours should stop between 7 and 10?

Solution: In this case, we deal with a random variable T , whose possible values are in a
continuous interval. Any value between 0 and 12 is possible and there are an infinite number of
possibilities.

We cannot count the equiprobable cases and we cannot associate point-probabilities. Therefore,
to each subinterval of [0, 12] we associate a probability proportional to the length of the
subinterval. Because to the interval [0,12] of length 12, we must associate the probability 1,
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we associate to an interval of unit length, the probability
1
12

, and therefore we will associate the

probability
3
12

to an interval of length 3 = 10− 7.

So, the probability that T takes values from 7 to 10, is
3
12

.

P (7 < T < 12) =
10− 7
12− 0

=
3
12

.

In this case, we can reason by measuring the probabilities through rectangular areas as follows:
we represent the time interval [0, 12] horizontally as in the figure and we consider the rectangle

of length 12 and width
1
12

.

We considered the width
1
12

, so that the rectangle’s area shall be equal to the probability of the

sure event (”the hand stops somewhere between 7 and 12 ”), that is 1. The shaded rectangle

corresponds to the interval [7, 10], and has the area 3 · 1
12

= P (7 < T < 12).

Example 1.27.2. A bus must arrive in the station A at 7 o’clock. For unknown reasons, the
arrival hour varies between 650 and 720. The relative frequencies of the different arrivals show
that these are distributed as in the figure below:

What is the probability that for the bus to arrive in time?

Solution: Let T be the random variable that gives the arrival hour. Suppose that T = 0 for
705, which is the middle point of the interval for the arrival hour. Because the triangle’s area is

1, and the base varies from T = −15 to T = 15, its height will be h =
1
15

.

The area of the shaded triangle represents the probability that the bus arrives in the station at

700 o’clock. The height of the triangle is
2
45

, and so its area will be
1
2
· 10 · 2

45
=

2
9
.

Therefore, the sought probability is
2
9
.

Example 1.27.3. On the line segment AB we randomly choose a point U . What is the
probability that the distance from point U to A is at least twice as large as the distance from
U to B?

Solution: To randomly choose the point U comes to saying that no region on the line segment
AB is privileged. This means that the probability that U belongs to a subinterval I of AB is
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proportional to I’s length. We have from here that

P (U ∈ I) =
length of I

length of AB

and therefore
P (|AU | > 2|BU |) =

1
3
.

1.28 The distribution function for the continuous random vari-
ables. Probability distribution

If X is a random variable whose values are the points of an interval, we expect to have small
changes in P (X < x) for small changes in x, in other words, the distribution function F (x) is
continuous.

Definition 1.28.1. A variable X with real values is called a continuous variable if its
distribution function F (x) is continuous.

In fact, we will suppose more. We will admit that F (x) is derivable and that
dF

dx
is continuous.

Definition 1.28.2. The function f(x) =
dF

dx
is called the probability distribution of the

variable X.

Since F is continuous, we have that

f(x) ≥ 0 , ∀x.

We also have that:

F (x) =
∫ x

−∞
f(t)dt and F (∞) =

∫ ∞

−∞
f(t)dt.

The distribution function F (x) is also called the probabilistic integral of X.

Remark 1.28.1. The probability distribution f is defined up to a multiplicative constant, which
is determined from the condition ∫ ∞

−∞
f(t)dt = 1.

Proposition 1.28.1. If a and b are two real numbers, the following equalities take place:

1. P (a ≤ X < b) = P (X < b)− P (X < a) = F (b)− F (a);

2. P (a ≤ X < b) = F (b)− F (a) =
∫ b

a
f(t)dt.

Proof. Immediate.

Remark 1.28.2. If a → b, then F (a) → F (b), that is

P (a ≤ X < b)−−−−−−−→
a→b

0,

so the probability that X takes the value b is zero. The expression f(b) does not give the
probability that X = b;we only use the probability distribution as an integrand.
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Remark 1.28.3. If b− a is small and f(x) is continuous, then

P (a ≤ X < b) =
∫ b

a
f(t)dt ≈ (b− a) · f(t)

where t =
a + b

2
.

Remark 1.28.4.

f(x) = lim
∆x→0

F (x + ∆x)− F (x)
∆x

= lim
∆x→0

P (x ≤ X < x + ∆x)
∆x

.

Aceast’a rela’tie explic’a ’si originea termenului de ”densitate de reparti’tie”: P (x ≤ X < x+∆x)
reprezint’a probabilitatea ca variabila aleatoare X s’a ia valori ’in intervalul [x, x + ∆x) (adic’a
”masa”), iar ∆x este lungimea acestui interval (adic’a ”volumul”).

Definition 1.28.3. We call mode, and denote it with Mo, the value of the variable X for which
the probability distribution is maximum.

The mode is among the roots of the equation

df

dx
= 0.

If the equation has only one solution, the distribution is called unimodal.

Because f(x) =
dF

dx
, we have that the mode is among the roots of the equation

d2F

dx2
= 0.

This shows that in x = Mo the graph of the distribution function has an inflexion point.

Definition 1.28.4. The α-quantile of the continuous random variable X is the value xα of
the variable X for which P (xα) = α.

If the function F (x) is strictly increasing, then the variable X admits quantiles of any order,
and these are unique.

The 1
2 -quantile is called median and we denote it Me. For the median we have

P (X < Me) = P (X > Me) =
1
2
.

Example 1.28.1. Determine the distribution function, the median, the mode for the random
variable T from the example 1.27.2.

1.29 The expected values and the variance of a continuous
random variable

Definition 1.29.1. If X is a continuous random variable with the probability distribution f ,
then its expected value is defined as

E(x) =
∫ +∞

−∞
x f(x)dx ,
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if the integral converges absolutely, that is
∫ +∞

−∞
|x f(x)|dx < +∞.

In the contrary we say that X does not have a finite expected value (mean).

Proposition 1.29.1. The expected value of a continuous random variable has the following
properties:

1. E(aX) = a · E(X);

2. E(X + Y ) = E(X) + E(Y );

3. E(X − E(X)) = 0.

Proof. We use the properties of the integral.

Example 1.29.1. In the conditions of the example 1.27.2, determine the expected value of the
arrival time.

Definition 1.29.2. The variance of the random variable X is

var(X) =
∫ +∞

−∞
(x− E(X))2 f(x)dx.

Example 1.29.2. Determine the variance of the random variable from the example 1.27.2.

1.30 The normal distribution

Definition 1.30.1. We say that a variable X follows a normal distribution of parameters
µ and σ2 if it has the probability distribution

n(x; µ, σ2) =
1

σ
√

2π
exp

[
− 1

2σ2
(x− µ)2

]
, −∞ < x < ∞ ,

and we will write X ∼ N(µ, σ2).

Proposition 1.30.1. If X ∼ N(µ, σ2), then

E(X) = µ and var(X) = σ2.

Proof. By direct calculations.

Remark 1.30.1. The function n(x; µ, σ2) is symmetric with respect to x = µ, it has a maximum
in x = µ and has inflection points in x = µ± σ. The graph of the function is represented in the
figure:

Definition 1.30.2. We say that the variable X has the standard normal probability
distribution if it has the probability distribution

n(x; 0, 1) =
1√
2π

e−
1
2
x2

, −∞ < x < +∞.
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Definition 1.30.3. The distribution function of the standard normal variable,

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
t2dt

is called Laplace function.

From the symmetry of Φ(x) we have that:

Φ(−x) = P (X < −x) = P (X > x) = 1− P (X < x) = 1− Φ(x)

from where:
Φ(x) + Φ(−x) = 1.

The normal distribution function has tables for different values of x. With these tables we can
find the probabilities associated with the events regarding any normal variable.

Proposition 1.30.2. If X ∼ N(µ, σ2), then:

i) P (X < b) = Φ
(

b− µ

σ

)
;

ii) P (a < X < b) = Φ
(

b− µ

σ

)
− Φ

(
a− µ

σ

)
.

Proof. We use the variable change u =
x− µ

σ
.

Proposition 1.30.3. If Xi ∼ Ni(µi, σ
2
i ), i = 1, n, then

Y =
n∑

i=1

ci Xi

has the property

Y ∼ Ni

(
n∑

i=1

ci µi,

n∑

i=1

c2
i σ2

i

)
.
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Chapter 2

STATISTICS

2.1 What is Statistics?

Problem 2.1.1. The West University of Timi’soara wants to make a development plan of the
accommodating facilities. To proceed to actions, the council decides it is necessary to answer the
following question: How many students will have to be lodged in the next ten years?
To answer this question we have to know at least the answer to the following two questions: How
many high school graduates will there be? How many want to attend an university? (And maybe
other questions as well).
To answer these two questions we need information concerning the number of high school
graduates in the next ten years and information indicating the percentage of those graduates
who wish to attend the U.V.T.
One way to obtain the data concerning the number of high school graduates in the next ten years
is to see this number for the past ten years and extrapolate it. We have to observe that this idea
assumes that there is a connection between the past and the future. This is not always true. In
this context, an additional question would be whether we have to count all the graduates from all
the high schools in the past ten years or we can limit our counting to those of certain schools?
In other words, can we consider only sample?
One way to obtain the data concerning the percent of high school graduates who wish to attend
the U.V.T. in the next ten years is to see this number for the past ten years and extrapolate it.
Other questions that arising, are: how do we interpret these data? How do we formulate a
conclusion based on these data? How do we make a decision based on these data?
We haven’t finished the enumeration of the questions that can be relevant. At this moment the
important thing is to start thinking about such problems and about the questions that need a
clarification in order to obtain an answer.

Remark 2.1.1. The relationship between statistics and probabilities
Statistics and probabilities are two strongly connected, but still distinct fields of mathematics. It
is said that ”probabilities are the vehicle of statistics”. This is true, meaning that if it weren’t
for the probabilistic laws, statistics wouldn’t be possible. To illustrate the difference between
probabilities and statistics, let us consider two boxes: a probabilistic and a statistical one. For
the probabilistic box we know that it contains 5 white, 5 black and 5 red balls; the probabilistic
problem is that if we take a ball, what is the chance that it were white? For a statistical box we
do not know the combination of balls in the box. We consider a sample and from this sample we
conjecture what we think the box contains. We have to remember the difference: the probability
sets the question of the chance that something (an event) happens when we know the probabilities
(we know the population). Statistics asks us to make a sample, to analyze it and then make a

55
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prediction concerning the population, based on the information provided by the sample.

Remark 2.1.2. The correct an the incorrect use of statistics
The use of statistics is unlimited. It is hard to find a domain where statistics is not used. We
give here some examples of where and how we use statistics:

• in education; descriptive statistics is often used to present results;

• in science; experimental results have to be collected and analyzed;

• government; it collects statistical data all the time.

many people are indifferent to statistical descriptions, others think they are lies. Most of the
statistical lies are innocent ones and come from an inadequate usage or from data coming from
an improper sample. All these lead to a wrong understanding of information from the consumer’s
side. The wrong use of statistics leads sometimes to confusions.

Remark 2.1.3. Statistics and the computer
In the last decade the computer has had an important role in nearly every aspect of life. Statistics
does not make exception, as it uses a lot of techniques that are repetitive; formulas to calculate
descriptive statistics, procedures to be made in order to formulate predictions. The computer
is very good to make such repetitive computations. The analysis of statistical data is much
easier if the computer has a standard statistical software. The most popular statistical softwares
are: Minitab, Biomed (biomedical program), SAS (Statistical analysis system), IBM Scientific
Subroutine Packages and SPSS (statistics package for social sciences).

2.2 Basics

Definition 2.2.1. The population is a collection (a set) of individuals, objects or numerical
data obtained by measurements, whose properties need to be analyzed.

Remark 2.2.1. The population is the complete collection of individuals, objects or numerical
data obtained by measurements and which are of interest (to the one collecting the sample). In
statistics the population concept is fundamental. The population has to be carefully defined and
is considered completely defined only if the member list is specified. The set of the Mathematics
and Informatics’ students is a well defined population.
Usually if we hear the word population, we think of a set of people. In statistics, the
population can be a set of animals, of manufactured objects or of numerical data obtained
through measurements. For example, the set of the ”heights” of the students of the Faculty
of Mathematics and Informatics is a population.

Definition 2.2.2. The sample is a subset of a population.

Remark 2.2.2. A sample is made of individuals, objects or measured data selected from a
population (by the sample collector).

Definition 2.2.3. A response variable (or simply variable) is a characteristic (usually a
numerical one) which is of interest for each element (individual) of a population.

Remark 2.2.3. the age of the student, his grade point average, his hair color, his height,
his weight a.s.o. are answer variables for the population: the students from the Faculty of
Mathematics and Informatics.
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Definition 2.2.4. A data is the value of a response variable for an element of the population
or of the sample.

Example 2.2.1. Popescu Nicolae is ”19 years” old, his GPA is 8.50, his hair color is ”brown”,
his height is ”1 m and 75 cm”, and his weight is ”65 kg”. These five ”values” of the five variables
(Remark 2.2.3) for Popescu Nicolae are ”five” data.

Definition 2.2.5. The ”values” of a variable for a population or a sample make up a data set
. In a data set, a data occurs as many times as the variable has this ”value”.

Example 2.2.2. The 25 heights in a 25 students’ sample is a set of 25 not necessary different
data.

Definition 2.2.6. A planned activity whose result is a data set is called experiment or survey.

Definition 2.2.7. A parameter is a numeric characteristic of a population.

Example 2.2.3. The percentage of students which have passed all the exams in the winter
term, is an example of parameter for the population made up of the students from the Faculty
of Mathematics and Informatics.

Remark 2.2.4. The parameter ia a numerical value concerning the whole population. In
statistics a parameter is usually denoted by a Greek letter.

Definition 2.2.8. A statistic is a numerical characteristic of a sample.

Example 2.2.4. The mean height of 25 students in a sample is an example of a statistic (sample
statistic).

Remark 2.2.5. A statistic is a numerical characteristic referring to a sample. Sample statistics
are denoted by Latin letters.

2.3 Data collection

The first problem of a statistician is the collection of a data set. This requires a preliminary
definition of the survey’s (event’s) objectives, of the population and of the variable.
Examples of objectives:

a) The comparison of the efficiency of a standard medicine;

b) The estimation of the average income of a family from the county.

Examples of populations and their corresponding variables:

a) the patients suffering from a disease undergoing a treatment with the considered medicine
represent the population, and the recovery time represents the variable;

b) the families of the county represent the population, and the total income of a family is the
variable.

Also before collecting the data set, we have to decide whether the data set is made up for the
whole population or just for a sample. If the data set is made up for the whole population, then
we consider a census.
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Definition 2.3.1. A census is an enumeration of each element of the population together with
the data (the value of the variable) corresponding to the element.

In the case of a large population, making up a data set is difficult and expensive. Therefore, if
organizing a census is not possible, the data set is considered for just a part of the population,
for a sample. The selection for the sample elements is made from a sampling frame.

Definition 2.3.2. A sampling frame is a list of elements belonging to a population, from
which we extract the sample.

Remark 2.3.1. Because only the elements from the sampling frame have a chance to be selected
in a sample, the sampling frame has to be representative for the population (from the variable’s
perspective).

Remark 2.3.2. For a population of individuals the elector lists or the telephone books are often
used as a sampling frame. Depending on the variable, these can be proper or improper sampling
frames.

Remark 2.3.3. After defining the sampling frame we pass to establishing the way of choosing
the elements of a sample. This process is called sample design.

Definition 2.3.3. The sample design means the establishing of the procedure in order to
choose the elements from the sampling frame.

There are many choice procedures for the elements of the sample. Altogether, the choice
procedures together with their corresponding samples, can be divided in two categories:
representability procedures and probabilistic procedures.

Definition 2.3.4. Judgement samples are samples for which the elements are chosen so that,
from the variable’s perspective, the chosen element is representative for the population.

Example 2.3.1. From the variable’s perspective: ”course A is useful or not for your profes-
sional development?”, the students from a sample who have not attended the course are not
representative. So they are not chosen in the sample.

Definition 2.3.5. A sample for which the elements are chosen on a probabilistic basis (every
element from the sample has a certain nonzero chance to be selected) is called probability
sample.

Remark 2.3.4. Statistic inferences require that the sample should be probabilistic. The random
probabilistic samples are the most familiar probabilistic samples.

Definition 2.3.6. A sample of size n is a random probability sample if any sample of size
n chosen from the same frame has the same probability to be chosen.

Remark 2.3.5. The most popular method to collect data uses a simple random sample.

Definition 2.3.7. A random probabilistic sample for which the elements are selected from a
frame where the elements are equiprobable is called simple random sample.

Remark 2.3.6. When we build a simple random sample we have to take care that each element
from the sampling frame has the same probability to be selected. We often make mistakes because
the ”random” term is mistaken for a ”randomly chosen” one. A correct manner to select a
simple probabilistic sample is that which uses a random number generator or a random number
table. First we number the elements from the sampling frame. After that we choose as many
numbers as necessary for the sample from the random number table. We will choose for the
sample each element from the sampling frame, whose number coincides with a number selected
from the random number table.
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Example 2.3.2. If the sampling frame is a list of 4265 students, then they are numbered
0001; 0002; ...; 4265. For a sample of 50 students we choose 50 four-digits random numbers
and and we identify the corresponding students from the sampling frame.

Definition 2.3.8. The systematic sample is build by choosing every k-th element from the
sampling frame.

Remark 2.3.7. In this selection we only use the random number table once, to determine the
start point.

Example 2.3.3. If we consider a sampling frame of 245 students from the Faculty of Mathe-
matics and Informatics and we want a systematic sample of 15 students then:

1) we associate to each student a number between 1 and 245;

2) we compute k (the counting step) using the following relationship:

k =
[
number of elements from the sampling frame

number of elements from the sample

]
=

[
245
15

]
= 16

3) we choose the starting point between 1 and k by using the random number table.

If this number is 10, we get the sample:

10, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 234.

Because k =
245
15

= 16, 33, is not an integer, the counting step can also be chosen 17. In this
case the systematic sample obtained has only 14 elements.

Remark 2.3.8. There is a good procedure to sample a percentage for large populations. In
order to select a systematic sample of x% from a population, we will select an element from
100/x (if 100/x is not an integer we take its integral part).

Remark 2.3.9. Using a systematic sample is improper if the given population is repetitive or
cyclic.(from the variable’s perspective)

Example 2.3.4. If we want to estimate the number of students admitted at the Faculty of
Mathematics and Informatics who are more than 20 years old and we use systematic sampling,
choosing from the nominee’s list those from the positions which are a multiple of 5, there is the
possibility that all the nominees in those positions are less than 20 years old. Such a sample
indicates there are no nominees over 20 years admitted, a fact which cannot be asserted.

When possible, when we sample very large populations we part the population into two
subpopulations based on certain characteristics. These subpopulations are called strata; the
strata are separate samples.

Definition 2.3.9. A sample obtained by stratifying the sampling frame and by selecting a
number of elements from each of the strata, is called stratified sample.

Remark 2.3.10. When we design a stratified sample, we divide the frame in two or more strata
and we design a subsample on each of the strata. these underlayers can be random, systematic
or of another kind. After that the subsamples are joined to one sample to collect a set of data.
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Example 2.3.5. To study one characteristic of the population of the students from the Faculty
of Mathematics and Informatics, we can divide this population based on:
- areas: informatics, mathematics
- academic years.

Definition 2.3.10. A quota sample (or proportional sample) is a stratified sample built
by selecting a number of elements from each of the strata by a certain quota or proportional to
the size of the stratum.

Example 2.3.6. If we want to build a sample of 150 students from the population of students
from the Faculty of Mathematics and Informatics we can make the stratification based on
academic years. In this case the number of selected students in each academic year will be
proportional to the total number of students in that year:

Academic year Number of students Quota Nr. of students
selected in the sample:

First Year 431 36.49% 54
Second Year 303 25.65% 40
Third Year 206 17.44% 26
Forth Year 240 20.40% 30

the sample will be made of 54 freshmen, 40 second-year students, 26 third year students and 30
senior students.

Another sampling method starting with a stratification of the population is the cluster sampling.

Definition 2.3.11. The cluster sample is a stratified sample built by selecting samples from
certain strata (not from all of them).

Example 2.3.7. If we wish to build a cluster sample of students from the West University of
Timi’soara, this population can be stratified based on their area of study, selecting samples only
from some areas (not from all of them).

Remark 2.3.11. The cluster sample is obtained using random numbers or a systematic method
to identify the strata to be sampled, and then sampling each of these strata. The assembled
subsamples build a cluster sample.

In given circumstances the sampling method used depends on the population, on the variable,
on the sampling difficulty and on the expenses. After establishing the sample we can go on to
collecting the data set.

2.4 Determining the frequency and grouping the data

After collecting a data set comes the primary processing of the data. Establishing the frequency
and grouping the data is a primary processing of data and it is used when we have a large
amount of information.
to illustrate the concept of frequency let use consider the following data set:

3 2 2 3 2
4 4 1 2 2
4 3 2 0 2
2 1 3 3 1
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0 appears only once, so the frequency for 0 is one.
1 appears three times in this set, so the frequency for 1 is three.
2 appears eight times in this set, so the frequency of 2 is eight.
3 appears five times in this set, so the frequency of 3 is five.
4 appears twice in this set, so the frequency of 2 is two.
the frequency of 0,1,2,3,4 occurring in the data set is given in the following table:

x f
0 1
1 3
2 8
3 5
4 3

Definition 2.4.1. The frequency f (from the second column) shows the number of times the
value of the variable x appears in the data set.

When we have a lot of distinct data in a set (instead of just a few, like in the previous example)
we group the data in classes and then we build frequencies for these classes.

To illustrate this procedure, let us consider the following data set:

82 74 88 66 58
62 68 72 92 86
74 78 84 96 76
76 52 76 82 78

We will put in the same class all the data which have the same first digit and we obtain the
following five classes:

50− 59; 60− 69; 70− 79; 80− 89; 90− 99

(50− 59 is the class made of all the data having the first digit 5, a.s.o.).
These classes do not intersect (there aren’t data belonging to two classes) and every data belongs
to a class.
The lower class limits are 50, 60, 70, 80, 90, and the upper class limits are 59, 69, 79, 89, 99.
Data belonging to a class are greater than the lower class limit and smaller than its upper limit.

Definition 2.4.2. The class width is the difference between the lower class limit and the next
lower class limit (in the previous example it is equal to 10 and it is the same for all classes); the
class width is not the difference between the lower and the upper limit of the same class.

Definition 2.4.3. The class boundary is the arithmetic mean of the upper class limit and the
next lower class limit inferior (in our example they are: 49, 5; 59, 5; 69, 5; 79, 5; 89, 5; 99, 5.)

Definition 2.4.4. The class mark is the arithmetic mean of the upper and lower class limit.
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In our example they are:

54.5 =
50 + 59

2
for the class 50− 59

64.5 =
60 + 69

2
for the class 60− 69

74.5 =
70 + 79

2
for the class 70− 79

84.5 =
80 + 89

2
for the class 80− 89

94.5 =
90 + 99

2
for the class 90− 99

In this case the frequency is the number of data in class. The grouped frequency of data is:

for the cluster 50− 59 2 data

for the cluster 60− 69 3 data

for the cluster 70− 79 8 data

for the cluster 80− 89 5 data

for the cluster 90− 99 2 data

Generally, in order to group the data and establish the frequency, we have to keep the following
rules:

1) The classes must not intersect and each data from the set must belong to a class;

2) All the classes must have the same width.

The grouping procedure implies:

i) An identification of the greatest data H and the smallest data L and the determination of
R = H − L.

ii) A choice of the number of classes m and of the class width c (if possible, an odd number)
so that the product m · c shall be a little bit bigger than R.

iii) The choice of a starting point I which is a little bit smaller than the smallest data L. We
add to I the multiples of c (c is the class width) and we obtain the numbers:

I, I + c, I + 2c, I + 3c, ..., I + (m− 1)c

These numbers are the lower class limits.

iv) The establishment of the upper class limits so that the conditions 1) and 2) hold.

v) Determining the frequency of each class by counting its elements.
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2.5 Data presentation

The presentation of a data set can be made in different ways and is part of the primary process-
ing of data.

Presenting the data as series

Definition 2.5.1. The frequency distribution is an ensemble of two finite sequences, the
first representing the distinct elements from the data set or the classes obtained by grouping the
elements from the statistical data, and the second, the corresponding frequencies.

Example 2.5.1. For the statistical data set we have:

3 2 2 3 2
4 4 1 2 2
4 3 2 0 2
2 1 3 3 1

the frequency distribution is:

X

(
0 1 2 3 4
1 3 8 5 3

)

Example 2.5.2. For the classes 50−59; 60−69; 70−79; 80−89; 90−99 obtained by grouping
the data from the data set:

82 74 88 66 58 74 78 84 96 76
62 68 72 92 86 76 52 76 82 78

the frequency distribution is:

X

(
50− 59 60− 69 70− 79 80− 89 90− 99

2 3 8 5 2

)

Generally, a frequency distribution looks like:

X

(
x1 x2 x3 · · · xn

f1 f2 f3 · · · fn

)

and whatever the level of data grouping, xi with the frequency fi, is called the frequency
distribution term.

Remark 2.5.1. When presenting the frequency distributions, instead of the frequency fi, we
often use the relative frequency:

f ′i =
fi

n∑

j=1

fj

or, in percentaged form:
f ′′i = f ′i · 100

Definition 2.5.2. The value of the piece of data that occurs with the greatest frequency in the
frequency distribution, is called mode.

Definition 2.5.3. The class with the highest frequency in a frequency distribution, is called
modal class.
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Definition 2.5.4. A bimodal frequency distribution is a frequency distribution which has
two highest frequency classes separated by classes with lower frequencies.

Definition 2.5.5. The cumulative frequency of a class is the sum of the frequencies of all
classes with smaller marks.

Definition 2.5.6. The dynamical (temporal, chronological) distribution is a double
sequence of which the first is the sequence of the values of the response variable, and the second
is the sequence of time moments where the variable takes these values. Generally we denote a
dynamical (temporal) distribution:

X

(
x1 x2 x3 · · · xn

t1 t2 t3 · · · tn

)

Presentation of data as statistical tables

Statistical tables are extremely variate and are used to arrange the statistical data from a data
set in order to apply the statistical computation and interpretation methods.

According to the number of characteristics presented, we have simple tables, double entrance
tables, group tables, etc.

The presentation of data in graphical form

There are several methods of graphical presentation of a statistical data set. The graphical
presentation method is given by the data type and by the presentation idea. We have to make
it clear from the beginning that there are several ways to represent statistical data in graphical
form. The analyst’s judgement and the circumstances of the problem have a major role in
choosing the graphic display method.

Definition 2.5.7. The graphs representing the ungrouped frequency distributions, are called
diagrams.

Definition 2.5.8. The pie chart of the (ungrouped) frequency distribution

X

(
x1 x2 x3 · · · xn

f1 f2 f3 · · · fn

)

is a circle dived in n circular sectors S1, S2, ..., Sn so that the area of the sector Si is equal to

f ′′i =
fi

n∑

j=1

fj

· 100

percents of the circle area.

Example 2.5.3. For the frequency distribution in example 2.5.1

X

(
0 1 2 3 4
1 3 8 5 3

)

the circle is divided in five sectors with areas equal to 5%, , 15%, 40%, 25%, 15% of the circle
area
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Definition 2.5.9. The bar chart of the (ungrouped) frequency distribution

X

(
x1 x2 x3 · · · xn

f1 f2 f3 · · · fn

)

is a set of n rectangles. f1, f2, ..., fn

Example 2.5.4. For the frequency distribution from example 2.5.1:

X

(
0 1 2 3 4
1 3 8 5 3

)

the bar chart is:

Definition 2.5.10. The stem and leaf diagram of the (ungrouped) frequency distribution

X

(
x1 x2 x3 · · · xn

f1 f2 f3 · · · fn

)

is a set of n rectangles. The basis of these rectangles are equal and they are situated on the Oy
axis, their heights being f1, f2, ..., fn.

Example 2.5.5. For the frequency distribution in example 2.5.1:

X

(
0 1 2 3 4
1 3 8 5 3

)

the stem and leaf diagram is:
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Definition 2.5.11. The histogram of the grouped frequency distribution

X

(
x1 x2 x3 · · · xn

f1 f2 f3 · · · fn

)

is a set of n rectangles representing the classes. The basis of these rectangles are equal (the
classes have the same width) and are situated on the Ox axis, their heights being f1, f2, ..., fn.

Example 2.5.6. For the frequency distribution in example 2.5.2:

X

(
50− 59 60− 69 70− 79 80− 89 90− 99

2 3 8 5 2

)

the histogram is:

Remark 2.5.2. Unlike a bar chart, for a histogram a column is a number of distinct data.

Remark 2.5.3. A histogram has the following components:

i) A title, which identifies the population;

ii) A horizontal scale, which identifies the variable X, the values of the class limits, the class
boundaries, the class marks.
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iii) A vertical scale which identifies the frequencies for each class.

Definition 2.5.12. A relative frequency histogram is a histogram in which the frequencies
are substituted by the relative frequencies.

The relative frequency (is a measure proportional to the given frequency) is obtained by
dividing the class frequency to the total number of elements from the data set.

Definition 2.5.13. The ogive of a class frequency distribution with cumulative relative
frequencies is a set of rectangles. The basis of the rectangles are equal and situated on the
Ox axis, their heights being the cumulative relative frequencies.

The ogive has the following components:

1. A title, which identifies the population.

2. A horizontal scale which identifies the upper class boundaries.

3. A vertical scale which identifies the cumulative relative frequencies of each class.

2.6 Parameters and statistics of the central tendency

A category of numerical characteristics associated to a statistical data set are: the central
tendency parameters, for the populations, and the central tendency statistics, for the
samples. As they have analogous definitions, we will only present the central tendency statistics.

Definition 2.6.1. The statistics of central tendency are numerical values associated to a
statistical data set, that locate in some sense the middle of this set of data.

Definition 2.6.2. The arithmetic mean of the set of statistical data {x1, x2, ..., xn} is the
sum of these data, divided by the number of data

x =

n∑

i=1

xi

n

Remark 2.6.1. When the data are given as a frequency distribution (without class grouping),
the arithmetic mean is given by the formula:

x =

m∑

j=1

xj · fj

m∑

j=1

fj

Remark 2.6.2. For a frequency distribution (with class grouping) with compute the mean with
the following formula:

x =

∑
x · fx∑
fx

where x represents the class mark and fx the corresponding frequency, and the sum is over the
whole set of classes.
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Definition 2.6.3. The root mean square of the statistical data set {x1, x2, ..., xn} is the
number:

xp =

√√√√√√
n∑

i=1

x2
i

n

Remark 2.6.3. If the data are presented as a frequency distribution (without class grouping),
the root mean square is computed with the formula:

xp =

√√√√√√√√√√

m∑

j=1

x2
j · fj

m∑

j=1

fj

Remark 2.6.4. For a frequency distribution with class grouping, the root mean square is given
by the following relationship:

xp =

√√√√√
∑

x2 · fx∑
fx

where x represents the class mark and fx the corresponding frequency, and the sum is over the
whole set of classes.

Definition 2.6.4. The harmonic mean of the statistical data set {x1, x2, ..., xn} is the
number:

xh =
n

n∑

i=1

1
xi

Remark 2.6.5. If the data are presented as a frequency distribution (without class grouping),
the harmonic mean is computed with the formula:

xh =

m∑

j=1

fj

m∑

j=1

1
xj
· fj

Remark 2.6.6. For a frequency distribution with class grouping, the harmonic mean is given
by the following relationship:

xh =

n∑

i=1

fx

n∑

i=1

1
x
· fx

where x represents the class mark and fx the corresponding frequency, and the sum is over the
whole set of classes.

Definition 2.6.5. The geometric mean of the statistical data set {x1, x2, ..., xn} is the
number:

xp = n

√√√√
n∏

i=1

xi
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Remark 2.6.7. If the data are presented as a frequency distribution (without class grouping),
the geometric mean is computed with the formula:

xg =
m∑

j=1

fj

√√√√
n∏

j=1

x
fj

j

Remark 2.6.8. For a frequency distribution with class grouping, the geometric mean is given
by the following relationship:

xg =
P

fx

√∏
xfx

where x represents the class mark and fx the corresponding frequency, and the sum is over the
whole set of classes.

Definition 2.6.6. Median me of a distinct statistical data set where the data are ranked in
order according to size x1 < x2 < ... < xn is the number that divides the data set in two sets of
the same size:

- if n = 2 · k + 1, then me is the value with the rank k + 1: me = xk+1;

- if n = 2 · k, then any number between the values xk and xk+1 satisfies the condition from
the definition of me. In this case we agree that me is the arithmetic mean of xk and xk+1:

me =
xk + xk+1

2
.

Example 2.6.1. For the statistical data set:

4 7 12 26 32 38 59

the median is me = 26.
For the statistical data set:

4 7 12 26 32 38

the median is me =
12 + 26

2
= 19.

Remark 2.6.9. In this case, the median me has the property that the frequencies sum of the
values greater than me is equal to the frequencies sum of the values smaller than me.

Remark 2.6.10. If the data are not necessarily distinct, the property from the Observation
2.6.9 may not be. For the set of data:

1 1 1 2 3 3 4

The corresponding frequency distribution is:

1 2 3 4
3 1 2 1

According to the definition of me, we have me = 2, 5. This value of me does not satisfy the request
that the values greater or smaller than it have equal cumulative frequencies; The frequency of
the smaller ones is 4, and the frequency of the others is 3.

Remark 2.6.11. When the data are presented as a (grouped or ungrouped) frequency distribu-
tion, me is computed by linear interpolation, based on the uniform distribution of frequencies in
the median interval hypothesis.

Definition 2.6.7. The midrange of the sample is, by definition, the number:

Mr =
L + H

2
where L is the lowest value and H is the highest value of the variable X
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2.7 Parameters and statistics of dispersion

After establishing the midrange of a set of data, the next natural question is: what are the
parameters and the statistics that characterize the dispersion of the data.

The parameters and the statistics of dispersion are: the range, the mean absolute deviation, the
variance, the standard deviation and the variation coefficient. These numerical values describe
the size of the spread or of the variability of the data. Closely grouped data will have a smaller
spread, while more widely spread-out data will have a larger dispersion.

Definition 2.7.1. The range P is the difference between the highest-valued (H) and the
lowest-valued (L) pieces of data:

P = H − L

The mean absolute deviation, the variance and the standard deviation measure the dispersion
about the arithmetic mean.

Definition 2.7.2. The deviation from the mean x of the value xi of the variable X is
di = xi − x.

The deviation is zero if and only if xi = x.
The deviation is positive if and only if xi > x.
The deviation is negative if and only if xi < x.

One might believe that the sum of the deviations
n∑

i=1

(xi − x) might serve as a measurement of

dispersion about the mean. But this sum is always zero:
n∑

i=1

(xi − x) =
n∑

i=1

xi − n · x = n · x− n · x = 0

To reduce the cancelling effect we will use the the absolute value of these deviations: xi − x.

Definition 2.7.3. The mean absolute deviation of the set of distinct statistical data
{x1, x2, ..., xn} is, by definition:

d =

n∑

i=1

|xi − x|

n

Remark 2.7.1. We calculate the mean absolute deviation, for data presented as a frequency
distribution, with the formula:

d =

m∑

j=1

|xj − x| · fj

m∑

j=1

fj

Remark 2.7.2. We calculate the mean absolute deviation, for data presented as a grouped
frequency distribution, with the formula:

d =

∑
|x− x| · fx∑

fx

where x represents the class mark and fx the corresponding frequency, and the sum is over the
whole set of classes.
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Even if we do not frequently use this dispersion parameter, it is a dispersion measurement and
it shows the mean distance from value of the variable X to the arithmetic mean.
There is another way of reducing the cancelling effect of the deviations. Squaring the deviations
will cause all these values to be positive (or zero). When we add these squares, the result will

be a positive number. The sum of the deviation squares about the arithmetic mean
n∑

i=1

(xi−x)2

is used in defining the variance.

Definition 2.7.4. The variance s2 of the set of distinct statistical data {x1, x2, ..., xn} is, by
definition:

s2 =

n∑

i=1

(xi − x)2

n
Remark 2.7.3. If the data set is presented as an ungrouped frequency distribution, we compute
the variance s2 with the formula:

s2 =

m∑

j=1

(xj − x)2 · fj

m∑

j=1

fj

Remark 2.7.4. If the data set is presented as an grouped frequency distribution, we compute
the variance s2 with the formula:

s2 =

∑
(x− x)2 · fx∑

fx

where x represents the class mark and fx the corresponding frequency, and the sum is over the
whole set of classes.

Definition 2.7.5. The standard deviation s of the set of distinct statistical data {x1, x2, ..., xn}
is, by definition:

s =




n∑

i=1

(xi − x)2

n




1
2

Remark 2.7.5. If the data set is presented as an ungrouped frequency distribution, we compute
the variance s with the formula:

s =




m∑

j=1

(xj − x)2 · fj

m∑

j=1

fj




1
2

Remark 2.7.6. If the data set is presented as an grouped frequency distribution, we compute
the variance s with the formula:

s =




∑
(x− x)2 · fx∑

fx




1
2



72 CHAPTER 2. STATISTICS

where x represents the class mark and fx the corresponding frequency, and the sum is over the
whole set of classes.

Remark 2.7.7. We have defined the standard deviation by a formula. So the question arises
what it actually represents. An answer to this question can be given with Chebyshev inequality
from which we have that for every frequency distribution, the fraction of data situated at at
most k units from the standard deviation is at least 1 − 1

k2 , where k is a arbitrary positive
number, greater than 1. In particular we have that, for every frequency distribution the fraction
situated at at most k = 2 units from the standard deviation represents at least 75% of the entire
data. If k = 3 then it represents 89% of the data.
According to the empirical rule that if a frequency distribution is normal, then the fraction of
data situated at at most one unit from the standard deviation σ is about 68% about the mean,
and the fraction of data situated at at most two units from the standard deviation σ is about
95%about the mean.

Definition 2.7.6. The variation coefficient V is by definition:

V =
s

x
· 100

Remark 2.7.8. The variation coefficient is a relative statistic of the dispersion and is used
when comparing the dispersion of different variables (characteristics).

Remark 2.7.9. V can take values between 0 and 100%. If V is close to zero (V < 35%), then
we have a homogenous population and the mean x is representative for this population. If V
is close to 100% (V > 75%), then we have a heterogenous population and the mean x is not
representative. Most of the times, in these cases, we need to separate the population in several
homogenous groups which are separately studied.

2.8 Factorial parameters and statistics of the variance

When analyzing the variance of a set of data we use the following factorial parameters of the
variance:

- group variance (partial) s2
j

- mean group variance s2

- the variance of the group means about the general mean δ2

- total variance s2.

Definition 2.8.1. For a group of m data x1, x2, ..., xm, the group variance is defined by the
formula:

s2
j =

m∑

i=1

(xi − xj)2 · nij

m∑

i=1

nij

where j is the group index, xj is the group mean, xi are the data from the j-th group having
the frequencies nij

Remark 2.8.1. The group variances are smaller than the variance and have lower or higher
values depending on the group’s heterogeneity.
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Definition 2.8.2. By definition the mean group variance is:

s2 =

k∑

j=1

s2
j · nj

k∑

j=1

nj

where k is the number of groups, nj =
m∑

i=1

nij is the number of data from a group.

Definition 2.8.3. The variance of the group means about the general mean is, by
definition:

δ2 =

k∑

j=1

(xj − x)2 · nj

k∑

j=1

nj

Comment 2.8.1. For a frequency distribution with 2-dimensional data we define the covari-
ance:

cov(X,Y ) =
1
n

m∑

i=1

k∑

j=1

(xi − x) · (yj − y) · nij

where: xi are the values of the variable X, yi are the values of the variable Y , nij is the
frequency of the pair (xi, yj) and n =

∑i=1 m
∑k

j=1 nij , x is the mean of the variable X and y
is the mean of the variable Y . The covariance tells us upon what degree the variables X, Y tend
to vary concomitantly and it is imprudent to interpret it in terms of causality. High values of
the covariance may come from:

- an immediate link between phenomena: work productivity - qualification of workers; work
productivity - technical equipment; request of wares - monetary incomes; national income
- accumulation; production - request; productivity - remuneration.

- covariation of phenomena due to certain causes: the covariance of the request of wares and
of the monetary savings is determined by the monetary income of the population.

2.9 Parameters and statistics of position

The parameters and statistics of position are used to describe the location of a specific piece of
data in relation to the rest of the sample.

Definition 2.9.1. The quantiles are numerical values which divide the set of data in q equal
groups. q is called the order of the quantile.

The median is the second order quantile.
The forth order quantiles divide the set of data in four equal groups; they are called quartiles.
There are three quartiles, usually denoted Q1, Q2, Q3.
The Q1 quartile is a number with the property that one quarter of the data have values less
than Q1 and three quarters have values greater than Q1.
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The Q2 quartile is a number with the property that a half of the data have values less than Q2

and half of them have values greater than Q2. The Q2 quartile is actually the median.
The Q3 quartile is a number with the property that three quarters of the data have values less
than Q3 and the other quarter have values greater than Q3.
Other categories of common quantiles are:

- the deciles which divide the set of data in 10 equal groups.

- the percentiles which divide the set of data in 100 equal groups.

- the permillages which divide the set of data in 1000 equal groups.

Every set of data has 99 percentiles Pk, k = 1..99. Pk is a numerical value having the property
that k% of the data have values smaller than Pk, and (100−k)% of the data have values greater
than Pk.

Remark 2.9.1. Q1 = P25; Q3 = P75; me = Q2 = P50

Remark 2.9.2. The procedure to determine the percentile Pk is as follows:

1) we order the data increasingly;

2) we find the position i of the percentile k. First, we determine the number
n · k
100

, where n

is the number of data. If
n · k
100

is not an integer, then i is the next integer (
n · k
100

= 17.2 →

i = 18). If
n · k
100

is an inter, then i is
n · k
100

+ 0.5 (
n · k
100

= 23 → i = 23.5).

3) we locate the value Pk: we count from L (the lowest value) i values, if i is an integer. If i
is not an integer, then it is and integer and a half. In this case Pk is the half sum of the
n · k
100

-th and the
n · k
100

+ 1-th data.

Another measure of position is the z or standard score.

Definition 2.9.2. The z or standard score is the position of the value x in terms of the
number of standard deviations it is located from the mean x :

z =
x− x

s

2.10 The sampling distribution of the sample statistics

In order to make predictions upon the population parameters we need to analyze the sampling
statistics. The mean x for a sample is not necessarily equal to the mean µ of the population.
But we are satisfied if x is close to µ. If we consider x′ for a second sample, it may differ from
x and µ. What we can hope is that it is close to µ and x. We are interested in the validity of
this type of behavior for any kind of population and statistic.

The question that naturally arises is about the meaning of ”close”. How do we measure and
determine this closeness? What is the sampling distribution of the sample statistics?

Definition 2.10.1. The sampling distribution of the sample statistics is the frequency
distribution of the statistics of a certain type obtained for all the samples of the same size. The
type can be any of those presented in sections 6 and 7.
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Example 2.10.1. We consider a population of N elements from which we can obtain the
following distinct data: {0, 2, 4, 6, 8}. For this population we form samples of size 2:

(0, 0) (2, 0) (4, 0) (6, 0) (8, 0)
(0, 2) (2, 2) (4, 2) (6, 2) (8, 2)
(0, 4) (2, 4) (4, 4) (6, 4) (8, 4)
(0, 6) (2, 6) (4, 6) (6, 6) (8, 6)
(0, 8) (2, 8) (4, 8) (6, 8) (8, 8)

For these samples we have the means:

0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

Because the samples are random, each one is chosen with the probability and the sampling
distribution of their means is:

x f ′(x)
0 0.04
1 0.08
2 0.12
3 0.16
4 0.20
5 0.16
6 0.12
7 0.08
8 0.04

where f ′(x) is the relative frequency of the mean x. The bar chart of the sample means is:

For the same set of 25 samples we can determine the sampling distribution of the ranges R.

The ranges R of these samples are given in the following table:
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0 2 4 6 8
2 0 2 4 6
4 2 0 2 4
6 4 2 0 2
8 6 4 2 0

The sampling distribution of the sample ranges is:

R f ′(R)
0 0.20
2 0.32
4 0.24
6 0.16
8 0.08

and the bar chart of the sample range is:

Example 2.10.2. When rolling a die N times, the set of data giving the number on the appearing
side is 1, 2, 3, 4, 5, 6.
We form samples consisting of 5 throws. Each of these samples has the mean x. We consider 30
such samples (that means 30×5 = 150 throws) and we represent the results and the corresponding
means:

Throw Sample x Throw Sample x
1 1 2 3 2 2 2.0 16 5 2 1 3 5 3.2
2 4 5 5 4 5 4.6 17 6 1 3 3 5 3.6
3 3 1 5 2 4 3.0 18 6 5 5 2 6 4.8
4 5 6 6 4 2 4.6 19 1 3 5 5 6 4.0
5 5 4 1 6 4 4.0 20 3 1 5 3 1 2.6
6 3 5 6 1 5 4.0 21 5 1 1 4 3 2.8
7 2 3 6 3 2 3.2 22 4 6 3 1 2 3.2
8 5 3 4 6 2 4.0 23 1 5 3 4 5 3.6
9 1 5 5 3 4 3.6 24 3 4 1 3 3 2.8
10 4 1 5 2 6 3.6 25 1 2 4 1 4 2.4
11 5 1 3 3 2 2.8 26 5 2 1 6 3 3.4
12 1 5 2 3 1 2.4 27 4 2 5 6 3 4.0
13 2 1 1 5 3 2.4 28 4 3 1 3 4 3.0
14 5 1 4 4 6 4.0 29 2 6 5 3 3 3.8
15 5 5 6 3 3 4.4 30 6 3 5 1 1 3.2
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The histogram of the sampling distribution of the means of the 30 samples is presented in the
following figure:

This distribution law seems to have the characteristics of a normal distribution; there is a
maximum and a symmetry with respect to its own mean 3.5.

2.11 The central limit theorem

In the preceding section we discussed the sample distribution of sample means and of sample
ranges. The mean is the most commonly used sample statistic and thus it is very important.
The central limit theorem is about the sampling distribution of sample means of random samples
of size n.

Let us establish what we are interested in when studying this distribution:

1) Where is the center?

2) How wide is the dispersion?

3) What are the characteristics of the distribution?

The central limit theorem gives us an answer to all these questions.

Theorem 2.11.1. The central limit theorem
Let µ be the mean and σ the standard deviation of a population variable. If we consider all
possible random sample of size n taken from this population, the sampling distribution of sample
means will have the following properties:

a) the mean µx of this sampling distribution is µ;

b) the standard deviation σx of this sampling distribution is
σ√
n

;

c) if the parent population is normally distributed the sampling distribution of the sample
means is normal;if the parent population is not normally distributed, the sampling
distribution of the sample means is approximately normal for samples of size 30 or more.
The approximation to the normal distribution improves with samples of larger size.
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In short, the central limit theorem states the following:

1) µx = µ, where x is the mean of the sample x;

2) σx = σ/
√

n, the standard deviation of the mean is equal to the standard deviation of the
population divided by the square root of the sample size.

3) the sample distribution of the sample means is approximatively normal regardless of the
shape of the parent population.

Remark 2.11.1. The standard deviation σx of the sampling distribution of the sample means
is the standard deviation of the sample means to the mean of the sampling distribution.
We won’t prove the central limit theorem, but we will illustrate its validity by examining an
illustration.
Let us consider a population whose relative frequency distribution for the variable X is:

X :
(

2 4 6
1/3 1/3 1/3

)

The mean µ and the standard deviation σ for this variable, are:

µ =
3∑

j=1

xj · f ′xj
σ =

√√√√√
3∑

j=1

x2
j · f ′xj

−



3∑

j=1

xj · f ′xj




2

µ =
12
3

= 4 σ = 1, 63

For this population, each sample of size 2 has the following possible data:

(2, 2) (2, 4) (2, 6)
(4, 2) (4, 4) (4, 6)
(6, 2) (6, 4) (6, 6)

The samples have the following means:

2 3 4
3 4 5
4 5 6

Sample Mean
(2,2) 2
(2,4) 3
(2,6) 4
(4,2) 3
(4,4) 4
(4,6) 5
(6,2) 4
(6,4) 5
(6,6) 6

Because they are random, each sample is chosen with the probability
1
9

and the sampling
distribution of the sample means is:

X

(
2 3 4 5 6

1/9 2/9 3/9 2/9 1/9

)
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The mean of the sampling distribution of the sample means µx is µx = 36/9 = 4, 0. So, µ = µx,
and the standard deviation of the sampling means distributions is:

σx =

√√√√√
5∑

j=1

x2
j · f ′xj

−



5∑

j=1

xj · f ′xj




2

=

√
156
9
−

(
36
9

)2

= 1, 15

σ√
n

=
1, 63√

2
=

1, 63
1, 44

= 1, 15 = σx

Representing the sapling distribution of the sample means we get:

This diagram shows us that the sampling distribution of the sample means is normal.

2.12 An application of the central limit theorem

The central limit theorem tells us about the sampling distribution of the sample means by
describing the shape of the distribution of all sample means (almost normal). It establishes the
relationship between the mean µ of the population and the mean µx of the sampling distribution,
and the relationship between the standard deviation of the population, σ, and the standard
deviation σx of the sampling distribution. Since sampling means are approximatively normally
distributed, we can establish probabilistic links between the population mean and a sample
mean.

Example 2.12.1. Consider a normal population with µ = 100 and σ = 20. If we choose a
random sample of size n = 16, what is the probability that the mean value of this sample is
between 90 and 110? In other words, what is P (90 < x < 110)?

Solution: According to the central limit theorem, the sampling distribution of the sample means
is normal. So we will have to transform the condition P (90 < x < 110) in a condition that
allows us to use the standard normal distribution table. We do this by writing:

P (90 < x < 110) = Φ
(

110− µx

σx

)
− Φ

(
90− µx

σx

)
=

= Φ
(

110− 100
σx

)
− Φ

(−10
σx

)
= 2 · Φ

(
10
σx

)
− 1 = F

(
10
σx

)
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where Φ(X) =
1√
2π

X∫

−∞
e
−

1
2
t2

dt and F (X) = Φ(X)− 1
2
.

Because σx =
σ√
n
, we have σx =

20√
16

= 5 and we obtain:

P (90 < x < 110) = 2 · Φ(2)− 1 = 2F (2) = 0.9544

Increasing the size of the sample, n, does not affect µx = µ but decreases σx. So P (90 < x < 110)
increases if n increases.

Example 2.12.2. Kindergarten children have heights that are normally distributed about a mean
of µ = 100 cm and a standard deviation of 12, 5 cm. We determine the mean x for a random
sample of 25 children. What is the probability that this mean value is between 90 and 110 cm?

Solution:

P (90 < x < 110) = 2 · Φ
(

10
σx

)
− 1 = 2 · Φ(4)− 1 = 2 · F (4) = 2 · 0.499968

2.13 Point estimation for a parameter

Let us consider a population whose mean µ is unknown and the problem of finding this mean.
For this purpose, we consider a random sample of size n for which we determine the mean x.
The sample mean x is a point estimation of the population mean µ.

Definition 2.13.1. A point estimation of the parameter γ of a population is a value g
of the corresponding statistic.

Remark 2.13.1. If x is the sample mean used to estimate the unknown mean µ of the
population, it doesn’t imply that x = µ. In general, x 6= µ and we expect that x is close to
µ. This closeness can be fixed by the specification of an interval (centered in µ) called interval
estimate.

Definition 2.13.2. A bounded interval (a, b) used to estimate the value of a certain parameter
γ of a population, is called interval estimate. The values a, b (the boundary of the interval)
are calculated from the sample that is used as a basis for the estimation.

The way of determining an unknown interval centered in µ using only data provided by a sample
is going to be described in the following.

Example 2.13.1. Consider a population with the known standard deviation σ, an unknown
mean µ and a simple random sample of size n and mean x, both known. The condition
x ∈ (µ− 1, µ + 1) means that the standard score z given by:

z =
x− µx

σx
=

x− µ
σ√
n

satisfies

z ∈ (− 1
σ√
n

,
1
σ√
n

) = (−
√

n

σ
,

√
n

σ
)

So, in terms of standard score, the interval estimate is (a, b) with a = −
√

n

σ
and b =

√
n

σ
.

More generally, the condition x ∈ (µ− δ, µ + δ), means that the standard score z given by:

z =
x− µx

σx
=

x− µ
σ√
n
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satisfies:

z ∈ (−δ · √n

σ
,
δ · √n

σ
)

The interval estimate is (−δ · √n

σ
,
δ · √n

σ
).

Definition 2.13.3. The level of confidence α is the probability that the sample statistic has
the value outside the interval estimate.

Example 2.13.2. In the example 2.13.1, x is normally or approximatively normally distributed
and we have:

P (µ− 1 < x < µ + 1) = P

(
−
√

n

σ
< z <

√
n

σ

)
=

2 · P
(

0 < z <

√
n

σ

)
= 2 · F

(√
n

σ

)

where F (z) =
1√
2 · π

z∫

0

e
−

1
2
t2

dt.

So the level of confidence α is 1− 2 · F
(√

n

σ

)
.

Definition 2.13.4. The level of confidence (confidence coefficient) 1− α is the probability
that the sample statistic is in the chosen interval estimate.

Definition 2.13.5. The confidence interval is an interval estimate with a specified level of
confidence 1− α.

Example 2.13.3. For the example 2.13.1, the interval estimate
(
−
√

n

σ
,

√
n

σ

)
is a confidence

interval with the confidence coefficient 1− α = 2 · F
(√

n

σ

)
.

Definition 2.13.6. The maximum error of estimate is one-half the width of the confidence
interval with the confidence coefficient 1− α.

In terms of standard score, this error is:

E = z
(α

2

)
· σ√

n

where z
(α

2

)
is the solution of the equation F (z) =

α

2
, and the confidence interval 1− α for µ

is: (
x− z

(α

2

)
· σ√

n
, x + z

(α

2

)
· σ√

n

)

x− z
(α

2

)
· σ√

n
is the lower confidence limit and x + z

(α

2

)
· σ√

n
is the upper confidence limit.

2.14 Generalities regarding the problem of hypothesis testing

To illustrate the analysis that precedes the decision making regarding the credibility of an as-
sertion (called hypothesis test) let us consider the following example:
The admission candidate Popescu Nicolae has to fill in a form test with ten questions. Each
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question has five answers of which only one is correct. Popescu Nicolae has completed the form
and answered correctly to seven of those questions. He claims to have filled in the form without
reading the questions and their answers and that he randomly marked the answers.
The question is to what extent can we believe that he randomly marked the answers?
Such a question determines us to analyze and decide: is it or is it not reasonable that Popescu
Nicolae obtains seven correct by answers choosing randomly the answers? In the following we
describe an analysis, called the hypothesis test, which leads to the formulation of a conclusion.
The hypothesis testing is, in general, a procedure which consists of 5 steps. Each of these steps
will be presented and illustrates for the considered example.

Step 1. Formulation of the null hypothesis H0

A hypothesis is a statement that something is true. In general, the null
hypothesis is a statement relative to a population parameter, and it states
that the parameter has a given value. Often the phrase ”there is no
difference” is used in its interpretation, thus the name ”null hypothesis”
(the difference is zero).

Step 2. Formulation of the alternative hypothesis Ha

The alternative hypothesis Ha is a statement about the same parameter that
is used in the null hypothesis H0. In Ha it is specified that the parameter
has a value different from the value given in H0.

The hypothesis H0 and the hypothesis Ha are formulated after an analysis of the assertion
that is to be investigated.
For the considered example:
The population is a set of 510 (distinct) elements. An element is an ordered system of 10 answers
(R′

i1
, R′

i2
, . . . , R′

i10
), i1, i1, . . . , i10 ∈ {1, 2, 3, 4, 5}; R′

i1
is one of the five possible answers to the

first question, . . . , R′
i10

is one of the five possible answers to the tenth question.
For a person that marks the answers randomly (without reading them), all the answers are
equally possible. In other words all of the five possible answers for a question have the same
chance to be correct. From the statement of Popescu Nicolae it follows that he randomly marked

the answers, so he admitted that the probability (the parameter p) for each element is
1

510
.

The analysis of the statement of Popescu Nicolae leads to the following formulation of the null
hypothesis:

H0 : p(X) =
1

510
= p for every Popescu Nicolae has completed

element X of the population ⇔ the form randomly.

The alternative hypothesis is:

Ha : there are two elements X1, X2 in the Popescu Nicolae hasn’t completed
population for which p(X1) 6= p(X2) ⇔ the form randomly

Starting from this point we admit that the null hypothesis is true. This situation can be
compared with a trial, where the accused is supposed to be innocent until the contrary is
proved.
We will make one of the two possible decisions only in the 5-th step of the hypothesis testing:
we decide agreeing to the null hypothesis and we say that we accept H0 or we decide agreeing
to the alternative hypothesis and we say that we reject H0.
Depending on the truth value of H0 and on its rejection or its failure to reject, we present the
decisions that are made in the following table:
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Decision The null hypothesis H0 is
True False

Fail to reject H0 correct error
(we accept it) decision

Type A Type II

Reject H0 error correct
decision

Type I Type B

A type A correct decision: occurs when H0 is true and we decide in its favor
A type B correct decision: occurs when H0 is false and our decision is in opposition to H0

A type I error: occurs when H0 is true and H0 is rejected
A type II error: occurs when H0 is false but we fail to reject it

It would be nice that each time we make a decision, it were a correct one, but this is statistically
impossible because they are based on sample information. The best we can hope for is to control
the risk and the probability with which an error occurs.
The probability of the type I error is called α and the one of the type II error, β:

Error Error type Probability
Rejection of a true hypothesis I α

Acceptance of a false hypothesis II β

Step 3 Determining the test criteria: it consists of (1) the identification of a
statistic test; (2) the specification of α; (3) the determination of the critical
region.
(1) A test statistic is a random variable whose value is used in rejecting or
accepting H0. The test statistic is a sample statistic or some other value
obtained from the sample results. The probabilities that appear in this test
statistic are determined supposing that H0 is true.

In the considered example, the random variable ”X= the number of correct answers” is used as
a test statistic. The probabilities for each value x of the variable X supposing that H0 is true,
are given in the following table:

X 0 1 2 3 4 5
P(X) 0.1074 0.2684 0.302 0.20133 0.0881 0.0264

X 6 7 8 9 10
P(X) 0.0055 7.92·10−4 7.38·10−5 4.098·10−6 1.02·10−7

This distribution shows that the probability to guess the correct answers for 5 or more ques-
tions, is 0.0327, and for 4 or less than 4 questions, is 0.9673. We can say that the occurrence
of the values 5, 6, 7, 8, 9, 10 does not support H0. If anyone said he guessed the correct answer
to 0, 1, 2, 3, 4 questions, we say it is very likely. If anyone said he guessed the correct answer to
5, 6, 7, 8, 9, 10 questions, we say this is quite unlikely.
The level of significance is the probability α to commit a type I error, that is to reject H0

when it is true. Currently α is given from the beginning, and it determines the critical region.
For the example, if α = 0.033, then from P (x ≥ 5) = 0.0327 we have that the critical region is
x = 5, 6, 7, 8, 9, 10.
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The critical region is the set of values (W ) for which P (X ∈ W ) ≥ α and it determines us o
reject the null hypothesis H0.
The critical value is the first value from the critical region.
If, for a sample, the value of the test statistic X surpasses the critical value, we reject the hy-
pothesis H0.

Step 4. Determining the value of the test statistic
After finishing steps 1,2,3 we observe or compute the value x of the test
statistic.

For our example, x = 7 (the number of correct answers) is the value of the test statistic and it
is given. We usually compute the value of the test statistic based on the sample information.

Step 5. Making a decision and interpreting it
The decision is made comparing the value of the test statistic determined in
Step 4 with the critical region found in Step 3.
Decision rule: If the value of the test statistic is in the critical region, we
reject H0, if not, we will fail to reject H0.
The set of values of the test statistic which are not in the critical region is
called the acceptance region. The test is completed by taking and motivating
the taken decision.

For our example: x = 7 is in the critical region, and we reject H0.

Remark 2.14.1. Thus we did not prove that Popescu Nicolae has not guessed the 7 answers.
We only showed that if he guessed them, he is very lucky for this is a rare event and has the
probability equal to or less than 0.033.

2.15 Hypothesis test:
A classical approach

In the previous section we presented generalities regarding hypothesis testing. In this section
we present the hypothesis testing for assertions regarding the mean µ of a population. To sim-
plify this presentation, we first suppose that the standard deviation σ of the population is known.

The following three examples refer to different formulations of the null hypothesis H0 and of the
alternative hypothesis Ha.

Example 2.15.1. An ecologist claims that Timi’soara has an air pollution problem. Specifically,
he claims that the mean level of carbon monoxide in downtown air is higher than 4, 9/106 =, the
normal mean value.

To formulate the hypotheses H0 and Ha, we have to identify: the population, the population
parameter in question and the value to which it is being compared.
In this case, the population can be the set of the downtown Timisoara inhabitants. The variable
X is the carbon monoxide concentration, whose values x vary according to the location, and the
population parameter is the mean value µ of this variable. The value to which this mean has to
be compared is 4, 9/106, the normal mean value. The ecologist makes an assertion concerning
the value of µ. This value can be: µ < 4, 9/106 or µ = 4, 9/106 or µ > 4, 9/106. The three
situations can be arranged to form two statements, one that states what the ecologist is trying
to show, and the other, the opposite.
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The inequality µ > 4, 9/106 represents the statement: ”the mean value is higher than 4, 9/106”.

The inequality µ ≤ 4, 9/106 is equivalent to ”µ < 4, 9/106 or µ = 4, 9/106” and it represents the
opposite statement: ”the mean value is not higher than 4, 9/106”.

The ecologist claims that µ > 4, 9/106. To formulate H0 and Ha, we remind that:

1) generally, H0 states that the mean µ (parameter in question) has a specified value.

2) The inference regarding the mean µ of the population is based on the mean of a sample,
and the sample means are approximatively normally distributed. (according to the central
mean theorem).

3) A normal distribution is completely determined if the mean value and the standard
deviation of the distribution are known.

All these suggest that µ = 4, 9/106 should be the null hypothesis and µ > 4, 9/106 the alternative
hypothesis:

H0 : µ = 4, 9/106

Ha : µ > 4, 9/106

Recall that once the null hypothesis is stated, we proceed with the hypothesis test that H0 is
true. This means that µ = 4, 9/106 is equal to the distribution mean of the sample means µx

and thus:
H0 : µ = 4, 9/106.

If we admit that the statement ”µ = 4, 9/106 or µ < 4, 9/106” is the null hypothesis H0, then:

H0 : µ ≤ 4, 9/106

Ha : µ > 4, 9/106.

Remark 2.15.1. The equal sign must always be present in the null hypothesis. In our example
the ecologist’s statement is actually expressed in Ha and we must analyze it.

Example 2.15.2. Let us consider now a second assertion; for instance, that of the Chamber of
Commerce, which claims that the mean level of carbon monoxide in downtown Timisoara is less
than 4, 9/106 (the normal value). This is a good commercial for tourism.

We have in this case as well, that the parameter is the mean µ of the carbon monoxide dis-
tribution. The specific value is 4, 9/106 which is the normal value.

”µ < 4, 9/106” ⇔ ”the mean value is less than the normal value”
”µ ≥ 4, 9/106” ⇔ ”the mean value is higher or equal to

the normal mean value”

H0, Ha can be formulated as follows:

H0 : µ ≥ 4, 9/106

Ha : µ < 4, 9/106

We have again that the assertion of the Chamber of Commerce is expressed in Ha and it must
be analyzed.

Example 2.15.3. A third assertion (a more neutral one) claims that the mean level µ of the
carbon monoxide in downtown air is different from 4, 9/106 (the normal value is different from
µ).
In this case:

H0 : µ = 4.9/106 and Ha : µ 6= 4, 9/106
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The three examples show that the assertion that has to be analyzed determine in some way the
formulation of the hypotheses H0, Ha. More exactly: in these cases the assertion claims that
the value of the parameter µ is different from the normal one, while the null hypothesis claims
it is the same.

In these examples, those who formulate the assertion expect the rejection of the null hypothesis,
H0, and the acceptance of the alternative one, Ha, which is a statement in accordance with their
assertion.

The situations from the judicial trials have some similarity with the facts stated before. If the
public prosecutor does not believe in the guilt of the accused, he does not sue him (the null
hypothesis H0: the innocence presumption is supposed as true). The trial takes place only if
the public prosecutor has enough proofs to start it.

It is somehow the same with statistics; if the experimenter believes the null hypothesis is true,
he will not challenge its truth and will not be testing it. He proceeds to test the null hypothesis
only if he wishes to show that Ha is correct.

The following example illustrates all the five steps of the hypothesis test procedure for a
statement regarding the population mean.

Example 2.15.4. For several years, a teacher has recorded his students’ grades, and the mean
µ for all these students’ grades is 72 and the standard deviation is σ = 12. The current class of
36 students has an average x = 75, 2 (higher than µ = 72) and the teacher claims that this class
is superior to his previous ones. The question is whether the class mean x = 75, 2 is a sufficient
argument to sustain the statement of the teacher for the level of significance α = 0, 05.
We mention that, in order for this class to be superior, it has to have a mean grade that is
higher than the mean of all the previous classes. If its mean is equal or less than the mean of a
previous class, it is not superior.
if we consider random samples of size n = 36 from a population with the mean
µ = 72, many sample will have the mean x close to 72, for instance 71; 71, 8; 72; 72, 5; 73.
Only the means x considerably higher than 72 will sustain the teacher’s statement.
Therefore:

Step 1. H0 : µx = µ = 72 ⇔ the class is not superior

Step 2. Ha : µx = µ > 72 ⇔ the class is superior

Step 3. - When in the null hypothesis H0 the population mean and the standard
deviation are known, we use the standard score z as a test statistic.

- the level of significance α = 0, 05 is given;

- We recall that based on the central limit theorem, the sample means
are approximatively normally distributed. So, the normal distribution
will be used to determine the critical region. The critical region is equal
to the set of the standard score values z which determine the rejection
of H0 and it is located at the extreme right of the distribution. The
critical region is on the right, because large values of the sample mean
support the null hypothesis H0 while values close to, or beneath 72
support the null hypothesis.

The critical value, the cutoff between ”not superior” and ”superior”, is determined by α, the
probability of the type I error. α = 0, 05 has been given. So the critical region, the shaded
region on Figure 2., has the area 0, 05 and the critical value 1, 65 is the solution of the equation:
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Figure 2.1:
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Figure 2.2:

Step 4. The value of the test statistic is given by:

z∗ =
x− µ

σ
√

n
=

75, 2− 72
12/6

= 1, 6

Step 5. We compare the value we found 1, 6 with the critical value 1, 65 and we have
1, 6 < 1, 65. The decision is that we cannot reject the null hypothesis H0.
The test ends with the formulation of the conclusion.
Conclusion: there is not sufficient evidence to show that the current class
is superior.

Does this conclusion seem realistic, regarding the fact that 75, 2 is higher than 72? We have to
keep in mind that x = 75, 2 is the mean of a sample of size 36 taken from a population of mean
µ = 72 and standard deviation σ = 12 and the study shows that the probability that the sample
mean is higher than all sample means, is larger than the risk, α, with which we are willing to
make a type I error.

Example 2.15.5. It has been claimed that the mean weight of women students at a college is
µ = 54, 4 kg, and the standard deviation σ = 5, 4 kg. The sports professor does not believe
this statement. To test the claim, he makes a random sample of size 100 among the women
students and finds the mean x = 53, 75 kg. Is this sufficient evidence to reject the statement at
the significance level α = 0, 05?

Step 1. H0 : µ = 54, 4 kg

Step 2. Ha : µ 6= 54, 4 kg
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Step 3. - because we use a sample mean distribution, the test statistic will be the
standard score.

- the level α = 0, 05 is given;

- the sample mean is an estimation of the population mean. The alternative
hypothesis, ”not equal to”, is supported by sample means considerably
larger or considerably smaller than 54, 4. The null hypothesis is supported
by sample means close to 54, 4. The critical region is made up of two equal
parts, one at each extreme of the normal distribution. The area of each
region will be

α

2
and its probability is 0, 025. We have that z

(α

2

)
= 1, 96

z
(α

2

)
is the solution of the equation:

1√
2 · π

∞∫

z

e
−

t2

2 dt =
α

2


.

Figure 2.3:

Step 4. We determine the value of the test statistic:

z∗ =
x− µ

σ√
n

= −1, 204

whose location is given in the next figure:

Figure 2.4:
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We recall that: If the value of the test statistic is in the critical region, we reject H0, if not,
we fail to reject H0.

Step 5. The value of the test statistic is not in the critical region.
Decision: We do not reject H0.
Decision justification: The value of the test does not disagree with H0 at
the risk level α = 0, 05. This does not mean that H0 is true.

Conclusion: The mean x found by the professor does not run counter to the hypothesis that
the mean µ is 54,4 kg, when the dispersion, σ, is 5, 4 kg.
A decision to reject H0, means that the test value implies that H0 is false and indicates the
truth of Ha.

A summary regarding the classical hypothesis test upon the mean:

1. The null hypothesis, H0, specifies a particular value of the population mean.

2. The alternative hypothesis, Ha, can take three forms. Each of these determine a specific
location of the critical region, as shown in the table below:

Sign in the alternative < 6= >
hypothesis’a

Critical region One region Two regions One region
left side one on each right side

side
Left one-sided Two-sided test Right one-sided

test test

3. In many cases, the sign in the alternative hypothesis Ha indicates the direction in which
the critical region is located.

The value of α is called level of significance, and it represents the risk (probability) of
rejecting H0 when it is actually true. We cannot determine whether H0 is true or
false. We can only decide whether to reject it or to accept it.
The probability with which we reject the true hypothesis is α, but we do not know the probability
with which we make a wrong decision. A type I error and a decision error are two different things.

2.16 Hypothesis test:
a probability-value approach

We have described the classical approach of the hypothesis test upon the mean µ of a population
in the previous section. A probabilistic approach implies the calculation of a probability value
called p-value (prob-value) related to the observed sample statistic, which is compared to the
level of significance α.

Definition 2.16.1. The p-value of a hypothesis test is the smallest level of significance, α, for
which the observed sample information becomes significant (H0 true, is rejected).
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We consider again the example 2.15.4 from the previous section and analyze it from this point
of view.

Example 2.16.1. For several years, a teacher has recorded his students’ grades, and the mean
µ for all these students’ grades is 72 and the standard deviation is σ = 12. The current class of
36 students has an average x = 75, 2 (higher than µ = 72) and the teacher claims that this class
is superior to his previous ones. The question is whether the class mean x = 75, 2 is a sufficient
argument to sustain the statement of the teacher for the level of significance α = 0, 05.
We mention that, in order for this class to be superior, it has to have a mean grade that is
higher than the mean of all the previous classes. If its mean is equal or less than the mean of a
previous class, it is not superior.

Step 1. The formulation of the null hypothesis H0: µx = µ = 72.
This hypothesis corresponds to the assertion the the current class is not
superior to the other classes.

Step 2. The formulation of the alternative hypothesis Ha : µx = µ > 72.
This hypothesis corresponds to the assertion the the current class is superior
to the other classes.

We notice that steps 1 and 2 are exactly the same when using either the classical or the proba-
bilistic approach to hypothesis testing.

Step 3. The specification of the level of significance α, of the probability of the type
I error: α = 0, 005.

Step 4. using the formula for the standard score (z-score) and the sample mean
x = 75, 2, where the sample size is n = 36, we determine the value of the test
statistic:

z∗ =
x− µ

σ√
n

= 1, 60

We observe that Step 4 in the probabilistic approach is the same as in the
classical approach of hypothesis testing.

Step 5. We draw a sketch of the probability distribution for the means (test statistic)
in this case, and we locate the value z∗ that we found at Step 4 (which parts
the distribution in two parts) and we determine which part of the distribution
represents the p−value.
Afterwards, we calculate the p−value. The alternative hypothesis Ha shows
that in our case:

p = P (z > z∗) = P (z > 1, 6) = 0, 0548

Step 6. In our case, the p-value is 0, 0548. Therefore we fail to reject the null
hypothesis for every level of significance α ≤ 0, 0548 and the conclusion is
that we haven’t got enough evidence to demonstrate the superiority of the
current class. But if the level of significance α is fixed from the beginning
and is greater than 0, 0548 (for ex. α = 0, 1) then we will reject the null
hypothesis and our conclusion will be the superiority of the current class.

Before looking at another example, let us summarize some details regarding the prob-value ap-
proach of the hypothesis testing:

1. The hypotheses H0 and Ha are formulated in the same manner as before.

2. We determine the level of significance, α, to be used.
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Figure 2.5:

3. The value of the test statistic is calculated in Step 4 in the same manner as before.

4. The p-value is the area between the probability distribution curve, the Oz axis and z = z∗.
There are three possible cases: two are one-sided and one is two-sided. the direction (or
sign) in Ha is the key:

Case 1. If Ha is one-sided to the right (” > ”) then p = P (z > z∗) and the area is to the right
of z∗.

case 2. If Ha is one-sided to the left (” < ”), then p = P (z < z∗) the area to the left of z∗.

Case 3. If Ha is two-sided (” 6= ”), then p = P (z < −|z∗|) + P (z > |z∗|) = 2 · P (z > |z∗|)

5. We make the decision comparing the p-value with the level of significance α:

a) If P ≤ α then H0 is rejected;

b) If P > α we fail to reject H0.

6. We formulate the conclusion in the same manner as in the classical approach.

Let us now consider an example where Ha is two-sided.

Example 2.16.2. Large companies use specialized agencies to test the prospective employees.
The A Agency uses a selection test which has resulted, in time, in scores distributed about a mean
of 82 and a standard deviation of 8. The B Agency has developed a new test that is quicker,
easier to administer and less expensive. The B Agency claims that their test results are the same
as those obtained by the A Agency test.
To reduce the cost, many of the companies are considering a change from the A Agency to the B
Agency, but they do not wish to make this change unless the B test results have the same mean
as the A test results. An independent agency, C, has tested 36 employees and obtained a mean
of 80.
Determine the p−value associated with this hypothesis test.
The results of the B Agency test are the same if µ = 82 and differ if µ 6= 82. Therefore:

Step 1. H0 : µ = 82 (the tests have the same mean)

Step 2. Ha : µ 6= 82 (the tests have different means)

Step 3. Step 3 is omitted when a question asks for the p-value and not for a decision.
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Step 4. The sample information n = 36 and x = 80:

z∗ =
x− µ

σ√
n

Step 5. We locate z∗ on a normal distribution; because Ha is two-sided, we will
consider P (z < −|z∗|) and P (z > |z∗|) and we have:

p = P (z < −1, 50) + P (z > 1, 50)
= 0, 5− 0, 4332 + 0, 5 + 0, 4332 = 0, 1336

so the p−value is 0, 1336.

Figure 2.6:

Each company will make a decision whether to: a) continue with A or b) make a change and go
to B. Each will need to establish the level of significance that best fits their own situation and
then make a decision using the rule described above.

2.17 Statistical inference about the population mean when the
standard deviation is not known

Until now we discussed two types of statistical inference about the population mean: the
confidence interval estimation and the hypothesis test. In these two types of inference the
standard deviation σ was known. However, the population standard deviation σ is not generally
known. This section deals with inferences about the mean µ when the standard deviation
σ is unknown.

If the sample size is sufficiently large (generally talking, samples of size greater than n = 30 are
considered sufficiently large), the sample standard deviation s is a good estimate of the standard
deviation of the population and we can substitute σ with s in the already discussed procedure.
If the population investigated is approximately normal and n ≤ 30, we will base our procedure
on the Student’s t distribution.

The Student’s t distribution (or simple, the t distribution) is the distribution of the t statistic,
which is defined as:

t =
x− µ

s√
n

In 1908 W.S. Gosset, an Irish brewery clerk, published a paper about the t distribution under
the pseudonym ”Student”. In Gosset’s paper the population is assumed to be normal. This
restriction has later proved to be too restrictive, because there were satisfactory results for
nonnormal populations. We do not give here the equations that defines the t-distribution, we
only mention some of the distribution’s properties:
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1) t is distributed with a mean of 0;

2) t is distributed symmetrically about its mean;

3) dt is distributed with a variance greater than 1, but as the sample size increases, the
variance approaches 1;

4) t is distributed so as to be less peaked at the mean and thicker at the tails than the normal
distribution;

5) t is distributed so as to form a family of distributions, a separate distribution for each
sample size. The t distribution approaches the normal distribution as the sample size
increases.

Figure 2.7:

Although there is a separated t distribution for each sample size (n=2,3,4,...), only certain key
critical values are practically used. These critical values, to the right of the mean, are given in
the following table:

α 0,40 0,30 0.25 0,20 0,10 0,05 0,025 0,010 0,005 0,001 0,0005
df
1 0,325 0,727 1,000 1,376 3,078 6,314 12,71 31,82 63,66 318,3 636,6
2 0,289 0,617 0,816 1,061 1,886 2,920 4,303 6,965 9,925 22,33 31,60
3 0,277 0,584 0,765 0,978 1,638 2,353 3,182 4,541 5,841 10,22 12,94
4 0,271 0,569 0,741 0,941 1,533 2,132 2,776 3,747 4,604 7,173 8,610
5 0,267 0,559 0,727 0,920 1,476 2,015 2,571 3,365 4,032 5,893 6,859
6 0,265 0,553 0,718 0,906 1,440 1,943 2,447 3,143 3,707 5,208 5,959
7 0,263 0,549 0,711 0,896 1,415 1,895 2,365 2,998 3,499 4,785 5,405
8 0,262 0,546 0,706 0,889 1,397 1,860 2,306 2,896 3,355 4,501 5,041
9 0,261 0,543 0,703 0,883 1,383 1,833 2,262 2,821 3,250 4,297 4,781
10 0,260 0,542 0,700 0,879 1,372 1,812 2,228 2,764 3,169 4,144 4,587
11 0,260 0,540 0,697 0,876 1,363 1,796 2,201 2,718 3,106 4,025 4,437
12 0,259 0,539 0,695 0,873 1,356 1,782 2,179 2,681 3,055 3,930 4,318
13 0,259 0,538 0,694 0,870 1,350 1,771 2,160 2,650 3,012 3,852 4,221
14 0,258 0,537 0,692 0,868 1,345 1,761 2,145 2,624 2,977 3,787 4,140
15 0,258 0,536 0,691 0,866 1,341 1,753 2,131 2,602 2,947 3,733 4,073
16 0,258 0,535 0,690 0,865 l,337 1,746 2,120 2,583 2,921 3,686 4,015
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α 0,40 0,30 0,25 0,20 0,10 0,05 0,025 0,010 0,005 0,001 0,0005
df
17 0,257 0,534 0,689 0,863 1,333 1,740 2,110 2,567 2,898 3,646 3,965
18 0,257 0,534 0,688 0,862 1,330 1,734 2,101 2,552 2,878 3,611 3,922
19 0,257 0,533 0,688 0,861 1,328 1,729 2,093 2,539 2,861 3,579 3,883
20 0,257 0,533 0,687 0,860 1,325 1,725 2,086 2,528 2,845 3,552 3,850
21 0,257 0,532 0,686 0,859 1,323 1,721 2,080 2,518 2,831 3,527 3,819
22 0,256 0,532 0,686 0,858 1,321 1,717 2,074 2,508 2,819 3,505 3,792
23 0,256 0,532 0,685 0,858 1,319 1,714 2,069 2,500 2,807 3,485 3,767
24 0,256 0,531 0,685 0,857 1,318 1,711 2,064 2,492 2,797 3,467 3,745
25 0,256 0,531 0,684 0,856 1,316 1,708 2,060 2,485 2,787 3,450 3,725
26 0,256 0,531 0,684 0,856 1,315 1,706 2,056 2,479 2,779 3,435 3,707
27 0,256 0,531 0,684 0,855 1,314 1,703 2,052 2,473 2,771 3,421 3,690
28 0,256 0,530 0,683 0,855 1,313 1,701 2,048 2,467 2,763 3,408 3,674
29 0,256 0,530 0,683 0,854 1,311 1,699 2,045 2,462 2,756 3,396 3,659
z 0,256 0,530 0,674 0,854 1,310 1,697 2,042 2,457 2,750 3,385 3,646

Figure 2.8:

In this table df takes values from 1 to 29 and it represents the degrees of freedom. The
proximity of the values belonging to the lines that correspond to df = 29 and z, is due to the
fact that if n ≥ 30 the t distribution is the normal one (the central limit theorem).

The degrees of freedom, df , is a parameter that is difficult to define. It is an index used to
identify the correct distribution to be used. In our considerations df = n − 1, where n is the
sample size. The critical value of the test t that we should use either in the estimation of the
confidence interval or in the hypothesis test is obtained from the above given table. In order to
obtain this value we need to know:

1) df - the degrees of freedom;

2) the α area determined by the distribution curved situated to the right of the critical value.
We will denote this value t(df, α).

Example 2.17.1. Determine t(10, 0.05) from the table. We have df = 10 and α = 0.05, so
t(10, 0.05) = 1.81.
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The critical values of the test statistic t situated to the left of the mean are obtained with the
formula: −t(df, α), considering the symmetry of the t distribution.

Figure 2.9:

We easily observe that −t(df, α) = t(df, 1− α). therefore: −t(df ; 0, 05) = t(df ; 0, 95).

Example 2.17.2. Determine t(15; 0, 95). We have: t(15; 0, 95) = −t(15; 0, 05) = −1, 75.

Figure 2.10:

The statistic t is used in the hypothesis tests about the mean µ in the same manner as the
statistic z.

Example 2.17.3. Let us return to the example concerning the air pollution; the ecologist’s point
of view: ”the level of carbon monoxide in the air, is higher than 4, 9/106”. Does a sample of 25
readings with the mean x = 5, 1/106 and s = 2, 1/106 present sufficient evidence to sustain the
statement? We will use the level of significance α = 0, 05.

Step 1. H0 : µ = 4, 9/106

Step 2. Ha : µ > 4, 9/106

Step 3. α = 0, 05; df = 25− 1 = 24 and t(24; 0, 05) = 1, 71 from the table.
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Step 4.
t∗ =

x− µ
s√
n

=
5, 1− 4, 9
2, 1/

√
25

=
0, 20
0, 42

= 0, 476 ' 0, 48

Step 5. Decision: We cannot reject H0 (t∗ is not in the critical region).
Conclusion: We do not have sufficient evidence to reject the hypothesis
that the level of carbon monoxide in the air is 4, 96/106.

Figure 2.11:

Remark 2.17.1. If df (df = n− 1) is higher than 29, then the critical value of t(df, α) is very
close to z(α) (the z-score is listed at the end of the table) and therefore instead of t(df, α) we
use z(α). Because the considered table contains only critical values of the t distribution, we
cannot determine the p-value from the table for the hypothesis test, because it needs the complete
t distribution. Still, we can estimate the p-value using the table.

Example 2.17.4. Let us return to the example 2.17.3. We have t∗ = 0, 48, df = 24 and
Ha : µ > 49. Therefore, to solve the problem using a probabilistic approach for Step 5 with the
p-value, we have:

p = P (t > 0, 48, provided df = 24)

Figure 2.12:

The line df = 24 from the table shows that the p-value is higher than 0, 25. The value 0, 685
from the table, shows that P (t > 0, 685) = 0, 25 as in the following figure:
Comparing t∗ = 0, 48, we see that the p-value is higher than 0, 25.



2.17. STATISTICAL INFERENCE ABOUT THE POPULATION MEAN WHEN THE STANDARD DEVIATION IS NOT KNOWN97

Figure 2.13:

Figure 2.14:

Example 2.17.5. Determine the p-value for the following hypothesis test:

H0 : µ = 55

Ha : µ 6= 55

provided df = 15 and t∗ = −1, 84.

Solution: p = P (t < −1, 84) + P (t > 1, 84) = 2 · P (t > 1, 84). The line df = 15 from the table
shows that P (t > 1, 84) is between 0, 025 and 0, 05. therefore, we have: 0, 05 < p < 0, 10.

The population mean can be estimated when σ is unknown in a manner similar to that used
when σ is known. The difference is the use of Student’s T in place of z and the use of s, the
sample standard deviation, as an estimate of σ. The formula for the 1 − α confidence interval
is: (

x− t(df,
α

2
) · s√

n
, x + t(df,

α

2
) · s√

n

)

where df = n− 1.
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Example 2.17.6. For a random sample of size 20 taken from the weights of new-born babies, we
have a weight mean of 3, 4 kg and a standard deviation of 0, 9 kg. Estimate, with 95% confidence,
the mean weight of all new-born babies.

Solution: x = 3, 4 kg, s = 0, 9 kg and n = 20, and 1 − α = 0, 95, implies: α = 0, 05; df = 19,
and we have from the table that t(19; 0, 025) = 2, 09. The interval boundaries are:

x± t(19; 0, 025) · s√
n

= 3, 4± 2, 09 · 0, 9√
20

3, 4± 2, 09 · 0, 9
4, 472

= 3, 4± 0, 46

The 95% confidence interval is (2, 94; 3, 86).

2.18 Inferences about the variance and the estimation of the
variance

Often problems arise that require us to make inferences about the variance. For example, a soft
drink bottling company has a machine that fills 0, 32 l= 32 cl bottles. The mean amount placed
in each bottle is important, but the correct mean amount does not ensure that the machine is
working correctly. If the variance is too large, there could be many bottles that are overfilled
and many that are underfilled. Thus this bottling company will want to maintain as small a
variance as possible.

We will study two kinds of inferences in this section. The first is the inference about the variance
(or the standard deviation) and the second is the estimation of the variance (the standard
deviation) of a population. Often in these two inferences it is customary to talk about the
standard deviation instead of the variance. We must underline that the standard deviation is
the square root of the variance; therefore talking about the variance is comparable to talking
about the standard deviation.
Let us return to the example of the soft drink bottling company. Let us imagine that this
company wishes to detect when the variability in the amount of soft drink placed in each bottle
gets out of control. A variance of 0, 0004 is considered acceptable and the company will want to
adjust the bottle-filling machine when the variance becomes larger than this value.The decision
will be made by using the hypothesis test procedure. The null hypothesis, H0, is that the
variance has the value 0, 0004, while the alternative hypothesis, Ha, states that the variance is
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larger than 0, 0004:

H0 : σ2 = 0, 0004 (the variance is controlled)
Ha : σ2 > 0, 0004 (the variance is out of control)

The test statistic that will be used in making a decision about the null hypothesis is the chi-
square, χ2. The calculated value of χ2 will be obtained by using the formula:

χ2 =
n · s2

σ2

where s2 is the sample variance, n is the sample size, and σ2 is the value specified in the null
hypothesis.

If we take a sample from a normal population, having the variance σ2, then the quantity n·s2/σ2

has a distribution called χ2. We shall not give here the formula that defines the χ2 distribution,
but in order to use the χ2 distribution we will mention the following properties:

1. χ2 is nonnegative in value; it is zero or positively valued;

2. χ2 is not symmetrical; it is skewed to the right;

3. There are many χ2 distributions. Like the t distribution, there is a different χ2 distribution
for each degree-of-freedom value. The inference studied here is corresponding to df = n−1.

The critical values of χ2 are given in the following table:
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df 0.995 0.990 0.975 0.950 0.900 0.10 0.05 0.025 0.01 0.005
2 0.01 0.020 0.050 0.103 0.211 4.61 6.0 7.38 9.21 10.6
3 0.071 0.115 0.216 0.352 0.584 6.25 7.82 9.35 11.4 12.9
4 0.207 0.297 0.484 0.711 1.06 7.78 9.50 11.1 13.3 14.9
5 0.412 0.554 0.831 1.15 1.61 9.24 11.1 12.8 15.1 16.8
6 0.676 0.872 1.24 1.64 2.20 10.6 12.6 14.5 16.8 18.6
7 0.990 1.24 1.69 2.17 2.83 12.0 14.1 16.0 18.5 20.3
8 1.34 1.65 2.18 2.73 3.49 13.4 15.5 17.5 20.1 22.0
9 1.73 2.09 2.70 3.33 4.17 14.7 17.0 19.0 21.7 23.6
10 2.16 2.56 3.25 3.94 4.87 16.0 18.3 20.5 23.2 25.2
11 2.60 3.05 3.82 4.58 5.58 17.2 19.7 21.9 24.7 26.8
12 3.07 3.57 4.40 5.23 6.30 18.6 21.0 23.3 26.2 28.3
13 3.57 4.11 5.01 5.90 7.04 19.8 22.4 24.7 27.7 29.8
14 4.07 4.66 5.63 6.57 7.79 21.1 23.7 26.1 29.1 31.3
15 4.60 5.23 6.26 7.26 8.55 22.3 25.0 27.5 30.6 32.8
16 5.14 5.81 6.91 7.96 9.31 23.5 26.3 28.9 32.0 34.3
17 5.70 6.41 7.56 8.67 10.1 24.8 27.6 30.2 33.4 35.7
18 6.26 7.01 8.23 9.39 10.9 26.0 28.9 31.5 34.8 37.2
19 6.84 7.63 8.91 10.1 11.7 27.2 30.1 32.9 36.2 38.6
20 7.43 8.26 9.59 10.9 12.4 28.4 31.41 34.2 37.6 40.0
21 8.03 8.90 10.3 11.6 13.2 29.6 32.7 35.5 39.0 41.4
22 8.64 9.54 11.0 12.3 14.0 30.8 33.9 36.8 40.3 42.8
23 9.26 10.2 11.0 13.1 14.9 32.0 35.2 38.1 41.6 44.2
24 9.89 10.9 12.4 13.9 15.7 33.2 36.4 39.4 43.0 45.6
25 10.5 11.5 13.1 14.6 16.5 34.4 37.7 40.7 44.3 46.9
26 11.2 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6 48.3
27 11.8 12.9 14.6 16.2 18.1 36.7 40.1 43.2 47.0 49.7
28 12.5 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3 51.0
29 13.1 14.3 16.1 17.7 19.8 39.1 42.6 45.7 49.6 52.3
30 13.8 15.0 16.8 18.5 20.6 40.3 43.8 47.0 50.9 53.7
40 20.7 22.2 24.4 26.5 29.1 51.8 55.8 59.3 63.7 66.8
50 28.0 29.7 32.4 34.8 37.7 63.2 67.5 71.4 76.2 79.5
60 5.5 37.5 40.5 43.2 46.5 74.4 79.1 83.3 88.4 92.0
70 43.3 45.4 48.8 51.8 55.3 85.5 90.5 95.0 100.0 104.0
80 51.2 53.5 57.2 60.4 64.3 96.6 102.0 107.0 112.0 116.0
90 59.2 61.8 65.7 69.1 73.3 108.0 113.0 118.0 124.0 128.0
100 67.3 70.1 74.2 77.9 82.4 114.0 124.0 130.0 136.0 140.0

The critical values will be identified by two values: degrees of freedom and the area under the
curve to the right of the critical value to be sought. Thus χ2(df, α) is the symbol used to identify
the critical value χ2 with df degrees of freedom and with the area α to the right as shown in
the following figure:

Example 2.18.1. Find χ2(20; 0, 05) and χ2(14; 0, 90) using the table.
We have from the table: χ2(20; 0, 05) = 31, 4 and χ2(14; 0, 90) = 7, 79.

Remark 2.18.1. If df > 2 the mean value of χ2 is df . The mean value is located to the right
of the mode (the value where the curve reaches its high point).

Example 2.18.2. Recall that the soft drink bottling company wanted to control the variance by
not allowing it to exceed 0, 0004. Does a sample of size 28 with a variance of 0, 0010 indicate that
the bottling process is out of control (with regard to variance)at the 0, 05 level of significance?
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Figure 2.15:

Figure 2.16:

Figure 2.17:

Solution:
Step 1. H0 : σ2 = 0, 0004 (the process is under control)

Step 2. Ha : σ2 > 0, 0004 (the process is out of control)



102 CHAPTER 2. STATISTICS

Step 3. α = 0, 05, n = 28, df = 27 and we have from the table:

χ2(27; 0, 005) = 40, 1.
Step 4.

χ2
∗ =

n · s2

σ2
=

28 · 0, 0010
0, 0004

= 70

Step 5. Taking the decision.

Figure 2.18:

Conclusion: The bottling process is out of control with regard to the variance.

Example 2.18.3. The specifications of a certain medicine indicate that each pill has to contain
2,5 g active substance. We analyze 100 pills, randomly chosen from the production. They contain
a mean of 2,6 g of active substance with a standard deviation of s = 0, 4g.
Can we say that the medicine follows the specifications (α = 0, 05)?

Step 1. The H0 hypothesis is that the medicine is according to the specifications:

H0 : µ = 2, 5

Step 2. The Ha hypothesis is that the medicine is not according to the specifications:

H0 : µ 6= 2, 5

Step 3. The statistic used here is the mean x, and the level of significance is α = 0, 05.
The critical region is:

Step 4. The test statistic is:

z =
x− µ

s√
n

=
2, 6− 2, 5

0,4
10

=
0, 1
0, 04

= 2, 5

The value of z in the table is: z0,975 = 1, 96 < 2, 5.

Step 5. H0 is rejected, therefore we cannot say that the medicine is according to the
specifications.

In the probabilistic approach of the statistical inference about the variance, the p-value can
be estimated for the hypothesis test using the statistic table χ2 in the same manner as for the
Student test.
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Example 2.18.4. Find the p-value for the following statistical hypotheses:

H0 : σ2 = 150
Ha : σ2 > 150

We know: df = 18 and χ2∗ = 32, 7.

Solution: p = P (χ2 > 32, 7) ∈ (0, 010; 0, 025) (critical data from the table).

Example 2.18.5. One of the factors used in determining the usefulness of a particular exam
as a measure of students’ abilities is the amount of ”spread” that occurs in the grades. A set
of test results has little value if the range of the grades is very small. However, if the range of
grades is quite large, there is a definite difference in the scores achieved by the better students
and the scores achieved by the ”poorer” students. On an exam with a total of 100 points, it has
been claimed that a standard deviation of 12 points is desirable. To determine whether or not
the last one-hour exam he gave his test was a good test, a professor tested the hypothesis above at
α = 0, 05 by using the exam scores of the class. There were 28 scores and the standard deviation
found was 10, 5. Does this constitute an evidence on the level of significance α = 0, 05 that the
exam does not have a specified standard deviation?

Solution: n = 28, s = 10, 5 and α = 0, 05
Step 1. H0 : σ = 12

Step 2. H0 : σ 6= 12

Step 3. α = 0, 05, df = 27 and we obtain the critical values from the table:

χ2
1(27; 0, 975) = 14, 6 and χ2

2(27; 0, 025) = 43, 2.

Step 4.

χ2
∗ =

n · s2

σ2
=

28 · (10, 5)2

(12)2
=

3087
144

= 21, 43

Step 5. We cannot reject H0.
Conclusion: We don’t have enough evidence to reject the null hypothesis H0.
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2.19 Generalities about correlation.
Linear correlation

In statistics, there occur problems of the following type: for the same population we have two
sets of data corresponding to two distinct variables and the question arises whether there is a
relationship between those two variables? If the answer is yes, what is that relationship? How
are these variables correlated? The relationships discussed here are not necessary of the type
cause-and-effect. They are mathematic relationships which predict the behavior of one variable
from knowledge about the second variable. Here we have some examples:

Example 2.19.1.

- Generally, a person who grows taller will also gain in weight. The question arises whether
there is a relationship between height and weight.

- The students spend their time at the university, learning or taking exams. The question
arises whether the more they study, the higher grades they will have.

- Research doctors test a new drug by prescribing different amounts and observing the
responses of their patients; we could ask, ”Does the amount of drug prescribed determine
the amount of recovery time needed by the patient?”

The problems from the previous example require the analysis of the correlation between two
variables.

When for a population we have two sets of data corresponding to two distinct variables, we form
the pairs (x, y), where x is the value of the first variable and y is the value of the second one.
For example, x is the height and y is the weight.
An ordered pair (x, y) is called bivariate data.

Traditionally, the variable X (having the values x) is called input variable (independent
variable), and the variable Y (having the values y) is called output variable (dependent
variable).

The input variable X is the one measured or controlled to predict the variable Y .

’In cazul test’arii medicamentului doctorii (m’asoar’a) controleaz’a cantitatea de medicament
prescris’a ’si deci aceast’a cantitate x este valoarea variabilei de intrare (independent’a) X.
Timpul de recuperare y este valoarea variabilei de ie’sire (dependente) Y .

In the example with height and weight, any of the two variables can be both input and out
variable. The results of the analysis will be depending on the choice made.

In problems that deal with the analysis of the correlation between two variables, the sample
data are presented as a scatter diagram.

Definition 2.19.1. A scatter diagram is the graphical representation of the pairs of data in
an orthogonal coordinate system. The values x of the input variable X are represented on the
Ox axis, and the values y of the output variable Y are represented on the Oy axis.

Example 2.19.2. For a sample of 15 students, the following table represents the number of
study hours for an exam, x, and the grade obtained to that exam, y:
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x 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8
y 5 5 7 5 7 7 8 6 9 8 7 9 10 8 9

The scatter diagram for this example is:

Example 2.19.3. The scatter diagram for these data:

x 2 12 4 6 9 4 11 3 10 11 3 1 13 12 14 7 2 8
y 4 8 10 9 10 8 8 5 10 9 8 3 9 8 8 11 6 9

is:

The primary purpose of the correlation analysis is to establish a relationship between the two
variables.

We will present some scatter diagrams to illustrate the possible correlations between the input
variable X and the output variable Y .

Definition 2.19.2. If for the increasing values x of the input variable X there is no definite
displacement of the values y of the variable Y , we then say that there is no correlation or no
relationship between X and Y .

The scatter diagram in the case of no correlation is the following:

Definition 2.19.3. If for the increasing values x of the input variable X there is a definite
displacement of the values y of the variable Y , we then say that there is a correlation. We
have a positive correlation if y tends to increase, and we have a negative correlation if y
tends to decrease while x increases.
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The precision of the shift in y as x increases determines the strength of the correlation. The
following scatter diagrams demonstrate these ideas:

Figure 2.19: The scatter diagram for a positive correlation

Figure 2.20: The scatter diagram for a high positive correlation

Definition 2.19.4. If the pairs (x, y) tend to follow a line, we say that we have a linear
correlation.

Definition 2.19.5. If all the pairs (x, y) are on a line (that is not horizontal nor vertical) we
say that we have a perfect linear correlation.

Remark 2.19.1. If all the pairs (x, y) are on a horizontal or on a vertical line, there is no
correlation between the two variables, that is because the change of one variable does not affect
the value of the other one.
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Figure 2.21: The scatter diagram for a negative correlation

Figure 2.22: The scatter diagram for a high negative correlation

Figure 2.23: The scatter diagram for a perfect linear correlation

Remark 2.19.2. Scatter diagrams do not always appear in one of the forms shown above and
they might suggest correlations of other kinds.

Definition 2.19.6. The coefficient of linear correlation r measures the strength of the
linear correlation between the two variables. It reflects the consistency of the effect that a
change in one variable has on the other.

Remark 2.19.3. The value of the coefficient of linear correlation r allows us to formulate an
answer to the question: is there a linear correlation between the two considered variables? The
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Figure 2.24: The scatter diagram for a nonlinear correlation

coefficient of linear correlation r has a value between −1 and +1. The value r = +1 signifies a
perfect positive correlation, and the value r = −1 signifies a perfect negative correlation.

If as x increases there is a general increase in the value of y, then r will indicate a positive linear
correlation.

For children, for example, if x is the age and y is the height, we then expect r to be positive,
because naturally, he child’s height increases as he grows older. For automobiles, if x is the age,
and y is its value, we then expect r to be negative, because usually the value of the automobile
decreases as the years pass.

Definition 2.19.7. The coefficient of linear correlation r for a sample, is by definition:

r =
∑

(x− x) · (y − y)
n · sx · sy

where sx, sy are the standard deviations of the variables x, y, and n is the number of pairs (x, y).

Remark 2.19.4. To calculate r we usually use an equivalent alternative formula:

r =
SS(x, y)√

SS(x) · SS(Y )

where: SS(x) =
∑

x2 − 1
n
·
(∑

x
)2

, SS(y) =
∑

y2 − 1
n
·
(∑

y
)2

, SS(x, y) =
∑

x · y − 1
n
·(∑

x ·
∑

y
)
.

Example 2.19.4. Determine the linear correlation coefficient r for a random sample of size 10,
if the data table is:

x 27 22 15 35 30 52 35 55 40 40
y 30 26 25 42 38 40 32 54 50 43

Using these data we have:

SS(x) = 1396, 9 SS(y) = 858, 0 SS(x, y) = 919, 0

wherefrom we find:
r =

919, 0√
(1396, 9) · (858, 0)

= 0, 8394 ≈ 0, 84.



2.19. GENERALITIES ABOUT CORRELATION. LINEAR CORRELATION 109

Remark 2.19.5. If the calculated value r is close to 0, there is no linear correlation.

If the calculated value r is close to +1 or −1, we then suppose that between the two variables
there is a linear correlation.

Between 0 and 1 there is a value called decision point which indicates whether or not there is a
linear correlation. There is also a symmetric point between −1 and 0. The value of the decision
point depends on the sample size.
In the next table there are positive decision points for different sample sizes between 5 and 100.

n decision n decision n decision n decision
point point point point

5 0,878 12 0,576 19 0,456 30 0,301
6 0,811 13 0,553 20 0,444 40 0,312
7 0,754 14 0,532 22 0,423 50 0,279
8 0,707 15 0,514 24 0,404 60 0,254
9 0,666 16 0,497 26 0,388 80 0,220
10 0,632 17 0,482 28 0,374 100 0,196
11 0,602 18 0,468
Table 1:Positive decision points for the linear correlation

The values of the decision points decrease as n increases.

If r is between the negative and the positive decision point, we have no arguments that there is
a linear correlation between the two variables.

If r is higher than the positive decision point or lower than the negative one, we have a linear
correlation between the two variables.

The existence of a correlation between the two variables, does not imply the ex-
istence of a cause-and-effect relationship. Therefore, for example, if X represents the
children allocation in the past 10 years and Y is the alcoholic drinks consumption in the last 10
years, a sample will indicate a high positive correlation. Certainly the increase in the allocations
has not caused the increase in the sales of alcoholic beverages or viceversa.

A quick estimation method of the linear correlation coefficient r for a sample, is as follows:

a) Draw a closed curve around the set of pairs (x, y):

b) Determine the length D of the maximum diameter:
c) Determine the length of the minimum diameter d:

d) The value r is estimated with ±
(

1− d

D

)
, where the sign is chosen according to the

orientation of the diameter D:

It should be noted that this estimating technique is very crude. It is very sensitive to the
”spread” of the diagram. however, if the range of the values of X and the range of the values of
Y are approximately equal, the approximation will be helpful.
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2.20 Linear correlation analysis

In section 20 we have seen the formula of the coefficient of linear correlation r between two
variables X,Y that measures the strength of the linear relationship of the two variables.

We shall now present a more complex analysis of this formula. We consider the following set of
bivariate data:
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x 2 3 6 8 11 12
y 1 5 3 2 6 1

The scatter diagram is:

The mean x of the variable x is 7: x = 7, and the mean of the variable y is 3: y = 3.
The point (x, y) is the point (7, 3) and it is called the centroid of the data:

If a vertical and a horizontal line are are drawn through (x, y), the graph is divided into four
sections. Each data (x, y) lies at a certain distance from each of these lines; x−x is the horizontal
distance from (x, y) to the vertical line passing through the centroid and y − y is the vertical
distance from (x, y) to the horizontal line passing through the centroid. The distances may be
positive, negative or zero depending on the position of the point (x, y) in reference to (x, y).
One measure of linear dependency is the covariance. The covariance of X and Y is defined as
the sum of the products of the distances of all values of X and Y from the centroid, divided by
n:

cov(x, y) =

n∑

i=1

(xi − x) · (yi − y)

n
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The covariance of the data given above is 0, 6.

Positive covariance means that the scatter diagram is dominated by points to the upper right
and to the lower left of the centroid. This is because the products (x− x) · (y− y) in the points
of these regions are positive.

If the scatter diagram is dominated by points to the upper left and lower right of the centroid,
the covariance is then negative because the products (x− x) · (y− y) for points of these regions,
are negative.

The biggest disadvantage of covariance as a measure of linear dependency is that it does not
have a standardized unit of measure. One reason for this is that the spread of the data is a
strong factor in the size of the covariance.

For example, if we were to multiply each data point in the previous table by 10 we will have the
following table:

x 20 30 60 80 110 120
y 10 50 30 20 60 10

The covariance for these data is 60, but this does not mean that the linear dependency between
X,Y is stronger. In fact the linear dependency is the same, only the data are more spread out.
This is the trouble with covariance as a measure.

We have to find a way to eliminate the effect of the spread of the data when we measure
dependency.

If we standardize X and Y by dividing each one’s deviation from the mean by its standard
deviation:

x′ =
x− x

sx
and y′ =

y − y

sy

and we calculate the covariance of X ′ and Y ′, we will have a covariance that is not influenced
by the spread of the data. This fact is accomplished when introducing the coefficient of linear
correlation, r. Therefore, the coefficient of linear correlation is:

r = cov(X ′, Y ′) =
covX, Y

sx · sy
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The coefficient of linear correlation standardizes the measure of dependency and allows us to
compare the relative strengths of dependency of different sets of data. The formula of the
coefficient of linear correlation is also commonly referred to as Pearson’s product moment.

The value of r for the set of data considered in the beginning is:

r =
0, 6

(4, 099) · (2, 098)
= 0, 07

Because determining the coefficient of linear correlation with the formula:

r =
covarX, Y

sx · sy

is quite tedious, we may use its following workable form:

r =
SS(X, Y )√

SS(X) · SS(Y )

This last one avoids the separate calculations of x, y, sx, sy and the calculations of the deviations
from the mean.

2.21 Inferences about the linear correlation coefficient

After the linear correlation coefficient r has been calculated for the sample data, it seems
naturally to ask this question: does the value of r indicate that there is a dependency between
the two variables in the population from which the sample was drawn?

To answer this question we shall perform a hypothesis test.
Step 1. The formulation of the null hypothesis H0:

”The two variables are linearly unrelated.”

This means that ρ = 0, ρ being the linear correlation coefficient for the
population.

Step 2. The formulation of the alternative hypothesis.
This can be one- or two-tailed. Most frequently is the two-tailed one ρ 6= 0.
However, if we suspect that there is only a positive or only a negative
correlation, we should use a one-tailed test The alternative hypothesis for
a one-tailed test is: ρ > 0 or ρ < 0.

Step 3. The critical region for the test is on the right is we expect a positive
correlation, and it is on the left a negative correlation is expected.

The test statistic used to test the null hypothesis is the value of r from the sample. The critical
values for r are found in the following table at the intersectionof the column identified by the
appropriate value of α and the row identified by the degrees of freedom df = n− 2:

The critical values for r if ρ = 0
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df|α 0,10 0,05 0,02 0,01
1 0,988 0,997 1,000 1,000
2 0,900 0,950 0,980 0,980
3 0,805 0,878 0,934 0,959
4 0,729 0,811 0,882 0,917
5 0,669 0,754 0,833 0,874
6 0,662 0,707 0,789 0,834
7 0,582 0,666 0,750 0,798
8 0,549 0,632 0,716 0,765
9 0,521 0,602 0,685 0,735
10 0,497 0,576 0,658 0,708
11 0,476 0,553 0,634 0,684
12 0,458 0,532 0,612 0,661
13 0,441 0,514 0,592 0,641
14 0,426 0,497 0,574 0,623
15 0,412 0,482 0,558 0,606
16 0,400 0,468 0,542 0,590
17 0,389 0,456 0,528 0,575
18 0,378 0,444 0,516 0,561
19 0,369 0,433 0,503 0,549
20 0,360 0,423 0,492 0,537
25 0,323 0,381 0,445 0,487
30 0,296 0,349 0,409 0,449
35 0,275 0,325 0,381 0,418
40 0,257 0,304 0,358 0,393
45 0,243 0,288 0,338 0,372
50 0,231 0,273 0,322 0,354
60 0,211 0,250 0,295 0,325
70 0,195 0,232 0,274 0,302
80 0,183 0,217 0,256 0,283
90 0,173 0,205 0,242 0,267
100 0,164 0,195 0,230 0,254

The values from this table are critical values for r for a two-tailed test.
For a one-tailed test the value of α is twice the value of α used in hypothesis testing.

Step 4. Determine r from the sample.

Step 5. Establish whether or not r is in the critical region.
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The failure to reject the null hypothesis is interpreted as meaning that linear dependency be-
tween the two variables in the population has not been shown.

Caution: This does not mean we have established a cause-and-effect relationship
but only a mathematical relationship which allows the prediction of the behavior
of the output variable Y from the behavior of the input variable X.

Example 2.21.1. For our table of data:

x 2 3 6 8 11 12
y 1 5 3 2 6 1

we have n = 6, and r = 0, 07. The question is whether this value of r is significantly different
from zero is the level of significance is α = 0, 02?

Step 1. H0 : ρ = 0

Step 2. H0 : ρ 6= 0

Step 3. We have α = 0, 02 and df = n− 2 = 6− 2 = 4. The critical values from the
table are: −0, 882 and 0, 882.

Step 4. The calculated value of r is r∗ = 0, 07

Step 5. We accept H0.

Conclusion: We could not show that X, Y are correlated. If we fail to reject the null hy-
pothesis it means that we have proved the linear independency of the two variables.

As in other problems, sometimes a confidence interval estimate of the population correlation
coefficient ρ is required. It is possible to estimate the value of ρ using a table that shows the
confidence belts. The next table represents such confidence belts for 95% confidence interval
estimates: The following example shows how such a table is to be read.

Example 2.21.2. For a sample of 15 pairs of data, a calculated value of r is r = 0, 35.
Determine the 95% confidence interval estimate for the linear correlation coefficient ρ of the
population?

1) We locate 0, 35 on the horizontal axis (the axis of the linear correlation coefficient) and we
draw a vertical line.
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2) We determine the intersection of the vertical line with the belts corresponding to the
sample size (15) and we have two points on the vertical line.

3) The confidence interval is the interval determined by the ordinates of these points
(−0, 20,−0, 72) (the ordinate axis is the axis of the linear correlation coefficient of the
population).

2.22 Linear regression

If the value of the linear correlation coefficient r indicates a high linear correlation, there arises
the problem of the establishment of an exact numerical relationship. This exact relationship is
obtained by linear regression.

Generally, the statistician looks for an equation to describe the relationship between the two
variables. The chosen equation is the best fitting of the scatter diagram. The equations found
are called prediction equations. Here are some examples of such equations:

y = b0 + b1 · x - linear

y = a + b · x + c · x2 - quadratic

y = a · bx - exponential

y = a · logb x - logarithmic.
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The final purpose is to make predictions using these equations. Generally an exact value of the
variable Y is not predicted. We are satisfied if the prediction is reasonably close.

Definition 2.22.1. The linear regression establishes the mean linear dependency of y in
terms of x.

Next, we shall describe how to establish the best linear dependency for a set of data (x, y).
If a straight-line relationship seems appropriate, the best-fitting straight line is found by using
the method of least squares.
Suppose that ŷ = b0 + b1 · x is the best linear relationship. The least squares method requires
that b0 and b1 are such that

∑
(y − ŷ)2 is minimum.

From Fermat’s theorem we have that the minimum values of the function:

F (b0, b1) =
∑

(y − b0 − b1 · x)2

are obtained for

b1 =
∑

(x− x) · (y − y)∑
(x− x)2

, b0 =
1
n
·
(∑

y − b1 ·
∑

x
)

b1 is the slope, and b0 is the y-intercept.
To determine the slope b1 we usually use the equivalent formula:

b1 =
SS(x, y)
SS(x)

where: SS(x) =
∑

x2 − 1
n
·
(∑

x
)2

and SS(x, y) =
∑

x · y − 1
n
·
(∑

x ·
∑

y
)
.

We mention here that the expressions SS(x, y) and SS(x) also appear in the formula of the
linear correlation coefficient. Therefore, when computing r we can also compute b1.

Example 2.22.1. For a sample of 10 individuals let us consider the following set of data.

x 27 22 15 35 30 52 35 55 40 40
y 30 26 25 42 38 40 32 54 50 43

To determine the line of best fit ŷ = b0 + b1 · x we calculate SS(x, y) and SS(x) and we have:

SS(x, y) = 919, 0 and SS(x) = 1396, 9

from where we find out that b1 is:

b1 =
919, 0
1396, 9

= 0, 6599 ≈ 0, 66.

To determine the y-intercept b0 we will eventually have:

b0 =
1
10

[380− 0, 65 · 351] = 14, 9077 ≈ 14, 9

So the best linear relationship is:
ŷ = 14, 9 + 0, 66 · x

Remark 2.22.1.
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a) The slope b1 the predicted change of the variable y according to an unit increase of the
variable x.

b) The ordinate b0 represents the value of y in x = 0. We can say that b0 is the predicted
value of y for x = 0, only if x = 0.

c) The best linear relationship is a line passing through the point having the coordinates (x, y).
This fact can be used as a verification when we draw the line of best fit.

Example 2.22.2. For a sample of 8 individuals let us consider the following set of data

x 65 65 62 67 69 65 61 67
y 105 125 11 120 140 135 95 130

The scatter diagram of this set of data suggests a linear correlation.

To find the line of best fit, we calculate SS(x, y) and SS(x) and we have:

SS(x, y) = 230, 0 and SS(x) = 48, 875

From here we have:
b1 =

230, 0
48, 875

= 4, 706 ≈ 4, 71.

b0 =
1
n

[∑
y − b1 ·

∑
x
]

= −186, 478 ≈ 186, 5

wherefrom:
ŷ = −186, 5 + 4, 71 · x



2.23. LINEAR REGRESSION ANALYSIS 119

Remark 2.22.2. A crude estimation of the best-fitting straight line can be made as follows:

- as for the approximation of the linear correlation coefficient r we consider a closed curve
around the set of pairs (x, y);

- the maximum diameter of the set is an approximation of the linear dependency graph;

- we right the linear dependency equation as the equation of a line passing through two points
of this diameter;

- as for the estimation of r this estimation is a crude one and has to be used as such.

2.23 Linear regression analysis

The linear model used to explain the linear dependence of two variables referring to the same
population, is defined by the equation:

y = β0 + β1 · x + ε

This equation represents the linear relationship between two variables x and y from a population.
In this relationship:
- β0 is the y-intercept;
- β1 is the slope;
- y is the value observed at a given value of x;
- β0 + β · x is the mean of y for the given value of x
We observe that the value ε depends on x. For the values x1, x2, . . . , xn of x the linear model is:

yi = β0 + β1 · xi + εi, i = 1, 2, . . . , n

- ε is the random error of the observed value y for a given value of x that represents the deviation
from the mean of the observed value y.

The regression line ŷ = b0 + b1 · x obtained from the sample data (xi, yi), i = 1, 2, . . . , n gives us
b0, which is an estimate for β0, and b1 which is an estimate for β1. We will then be able to write
yi = b0 + b · xi + ei. The error is approximated by yi − ŷi which is the difference between the
observed value yi and the predicted value ŷi of y for a given value of x. Because ŷi = b0 + b1 · xi

we have that:
ei = yi − ŷi

The errors ei are known as residues.
The random variable e has the following properties:

• e > 0 ⇐⇒ y > ŷ;

• e < 0 ⇐⇒ y < ŷ;

• for a given x the sum of the errors for different values of x is zero; this is a consequence
of the method of least squares; therefore the mean of the experimental errors is zero:∑n

i=1 ei = 0.

We denote with σ2
ε the variance of the random errors of the data observed; we want to estimate

this variance.
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But before we estimate the variance σ2
ε let us analyze what the error εrepresents. ε represents

the difference between the observed value y and the mean value of y for a given value of x. As
we do not know the mean value of y, we will use the regression equation and estimate it with ŷ
the predicted value of y at this same value of x. therefore the estimation if ε is e = y − ŷ.

If for a given value x we have more observed values y these can be represented on the vertical
axis Ox in x.

There is a similar distribution for each value of x. The mean value of the observed data y
depends on x and is estimated by ŷ.

In other words, the standard deviation from the mean of the data distribution y is the same for
each x:

We recall that the variance s2 of a set of statistical data x1, x2, . . . , xn has been defined with
the formula:

s2 =
1
n

n∑

i=1

(xi − x)2

The determination introduces a complication because the mean of the data y differs from an x
to another. For each x the mean is estimated by the predicted value ŷ that corresponds to x by
the regression line. Thus, the variance of the error ε is estimated with the formula:

s2
ε =

1
n

n∑

i=1

(yi − ŷi)
2
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that shows that the variance of the error ε is the variance of the variable y around the regression
line. The variance of the error s2

ε can be written as:

s2
ε =

1
n

∑
(y − b0 − b1 · xi)

2 =
1
n

[∑
y2

i − b0 ·
∑

y − b1 · xi · yi

]

and it is an estimate for σ2
ε

Example 2.23.1. Suppose a person moves to Timi’soara and takes a job. He wants to know
the time needed to commute to and from work by car. To find an answer to this question he asks
15 colleagues about their one-way travel time and the distance to work. The resulting data are
shown in the table below:

coleg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x - distance

(in km) 3 5 7 8 10 11 12 12 13 15 15 16 18 19 20
y - time
(in min) 7 20 20 15 25 17 20 35 26 25 35 32 44 37 45

To find an answer to his problem he has to determine the regression line and the variance s2
e.

Using the formulas, he finds:

SS(x) = 2, 616− (184)2

15
= 358, 9333
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SS(x, y) = 5, 623− (184) · (403)
15

= 679, 53333

b1 =
358, 9333
679, 53333

= 1, 893202 ≈ 1, 89

b0 =
1
15

[403− (1, 893202) · (184)] = 3, 643387 ≈ 3, 64

ŷ = 3, 64 + 1, 89 · x.

This is the formula to estimate the mean time he needs to get to work depending on the distance
x between his home and his workplace.

To find the standard deviation from the estimated value he will also have to calculate the variance
s2
ε. He finds: s2

ε = 29, 17.

2.24 Inferences concerning the slope of the regression line

Now that the equation of the regression line has been determined we wonder when we can use
this equation to predict the values of the variable y depending on x?

We will answer this question by hypothesis testing. Before making an inference concerning the
regression line we consider the following hypotheses:

- for each x the distribution of the observed data y is approximatively normal;

- for each x the variance of the distribution of the observed data is the same.

Before we pass to the five steps let let us analyze the distribution of the slopes obtained for
random samples of size n. These slopes b1 are almost normally distributed with a mean of β1,
the population value of the slope, and with a variance of σ2

b1
where:

σ2
b1 =

σ2
ε∑

(x− x)2

An appropriate estimator for σ2
b1

is obtained by replacing σ2
ε with s2

e:

s2
b1 =

s2
e∑

(x− x)2

This formula may be rewritten in the following form:

s2
b1 =

s2
e

SS(x)
=

s2
e∑

x−
[
(
∑

x)2 /n
]

The standard error of the regression (slope) is σb1 and it is estimated bysb1 .

We are now ready to go to the hypothesis test:

Step 1. The formulation of H0. The null hypothesis will be β1 = 0. If β1 = 0 then
we cannot use the linear equation to predict the value of y this means that:
ŷ = y.

Step 2. The alternative hypothesis can be either one-tailed or two-tailed. If we
suspect that the slope is positive, a one-tailed test is appropriate: Ha : β1 > 0.
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Step 3. As a test statistic we use t. The number of degrees of freedom for the test
is df = n− 2. For the example 2.23.1 of travel times and distances, we have
df = 15− 2 = 13. For a level of significance α = 0, 05, the critical value of t
is t(13; 0, 05) = 1, 77.

The formula used to calculate the value of the test statistic t for inferences
about the slope is:

t∗ =
b1 − β1

sb1

Step 4. Considering the equality s2
b1

=
s2
e

SS(X)
for the considered example we find

that the value of the test statistic is:

t∗ =
b1 − β1

sb1

=
1, 89− 0√

0, 0813
= 6, 629 ≈ 6, 63

Step 5. Decision: reject the null hypothesis H0 because t∗ is in the critical region.
Conclusion: The slope of the line of best fit in the population is greater
than zero. The evidence indicates that there is a linear relationship and the
travel time to work can be predicted based on the one-way distance.

The slope β1 of the regression line of the population can be estimated by means of a confi-
dence interval. The confidence interval is given by:

b1 ± t(n− 2;
α

2
) · sb1

The 95% confidence interval for the estimate of the population slope is:

1, 89± 2, 16 ·
√

0, 0813 = 1, 89± 0, 62

Thus 1, 27 to 2, 51 is the 95% confidence interval for β1.
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